11S△ABC=×48=12。 44
11AD BD8 624又∵ AD BD= AB DH,∴DH 。 22AB105S△DEF=
∵△BDF∽△DEF,∴∠DFB=∠EFD。
∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF。
又∵DF=DF,∴△DHF≌△DGF(AAS)。∴DH=DG=
∵S△DEF=24。 51124·EF·DG=·EF·=12,∴EF=5。 225
【考点】旋转的性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,全等三角形的判定和性质。
【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE:
∵AB=AC,D为BC的中点,∴AD⊥BC,∠B=∠C,∠BAD=∠CAD。
又∵∠MDN=∠B,∴△ADE∽ABD。
同理可得:△ADE∽△ACD。
∵∠MDN=∠C=∠B,∠B+∠BAD=90°,∠ADE+∠EDC=90°,∠B=∠MDN,
∴∠BAD=∠EDC。
∵∠B=∠C,∴△ABD∽△DCE。∴△ADE∽△DCE。
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出
BDDF,从而得出△BDF∽△CED∽△DEF。 =CEED
(3)利用△DEF的面积等于△ABC的面积的1,求出DH的长,从而利用S△DEF的值求出EF即可。 4
4. (2012江苏淮安12分)如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针方向旋转135,得到矩形EFGH(点E与O重合).
(1)若GH交y轴于点M,则∠FOM= ,OM=
(2)矩形EFGH沿y轴向上平移t个单位。
①直线GH与x轴交于点D,若AD∥BO,求t的值;
②若矩形EFHG与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤42 2时,S与t之间的函数关系式。 0
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库2012年全国中考数学选择填空解答压轴题分类解析汇编 专题12 几何(14)在线全文阅读。
相关推荐: