结构动力学作业
00??0.1644T?00.00520????M?????????00.0023??0?1111????????2.5???0.1644
3???各阶振型图:
2?13.9???????????????????????????????????????20.8???23
1 1.4142 1 振型2 1 1 振型1 -1.414 振型3
3.9一轻型飞行器的水平稳定器被简化为3个集中质量系统的模型,见图3-16,其刚度、质
量矩阵和固有频率及模态形状已经求出。若飞行器遇到一突然的阵风,其产生的阶跃力为
?500???p?t???100?f?t?
?100???其中f?t?是单位阶跃力,如图3-16。
??0??0; (1)确定模态响应?r?t?表达式,假设V?0??V(2)确定V1?t?响应的表达式,并指出个模态的贡献。 其中
V1 P1 V3 P3 ?0.0656?0.15380.1220???105
?0.15380.4797?0.5843?k???????0.1220?0.58431.2593??f (t) 1 t 图3-16
- 36 -
第三章 多自由度系统
0??4.00??106.00?m?????386?08.0??0??12?59900?????????22?1330000?????????32?8400000 ?8031?4.961.70??4.085.36?4.35????????5.71??1.103.80?
解:(1)进行坐标变换:
?x?????????100?T?010???M??M??????????????001??00??0.06T?01.3357??106??K??K??0???????????08.40??0??4673?T????F??pt??1564??????f?t????983??????????00??0?r?t??1?1?cos??it??fik?i???1?t??0.0779??1?cos?244.74t????????2?t???0.00117??1?cos?1153.3t??????1?cos?2898.3t?????3?t??0.000117?(2)
3
V1???i?11?1?cos??it??fr?ri?1ikr?1i3?8.31??1?cos244.74t8.31?500?4.08?100?1.10?100N?1?????????0.06?106??N?2???4.96??????1?cos1153.3t?4.96?500?5.36?100?3.80?100??????????????N?36?1.3357?10??1.70???1?cos2898.3t1.70?500?4.35?100?5.71?100?????????????????????????????8.40?106????
- 37 -
结构动力学作业
???????0.6472?1?cos?244.74t????N?1?N?2??N?3 ????????????1?cos?1153.3t???????????????????????????4??1?cos?2898.3t???????????????
3.10一栋三层楼房,如图3-17,其刚度、质量矩阵和固有频率及振型如下:
0??800?800?100??????????????????????m??020??8002400?1600?k????????????0?16004000???002???12?251.1??????????????22?1200.0?????????????????????32?2548.9?1.000001.000000.31386??0.68614?0.50000?0.68614?????????0.31386?0.500001.00000??
(1)确定模态质量、模态刚度矩阵M,K; (2)若p?t???100100100?cos??t?, 确定模态力Fr;(3)确定稳定响应?r的表达式;
T m1?1 u1k1?800 u2 m2?2 u3 m3?2 k2?1600 k3?2400 (4)用模态位移法确定u1的响应,并指出各阶模态对响应的贡献,并列出当激振频率分别
为??0,??0.5?1,??1??1??3?时,u1的振幅随截取模态数变化的表格。 2T解: (1) ??M???????m????
00??2.1386?
??????????02.000???03.0401??0?00??537?02400?
??K?0?????07748.9??0?(2) Fr????p?t?
- 38 -
T第三章 多自由度系统
?200??0?cos?t
???????????62.772??(3)
?r?fr
kr?mr?2?1?200cos??t? 2537?2.1386?0cos??t??2??0
2400?2.00?2?3?(4)
62.772cos??t? 27748.9?3.0401?u1??a11a12a13?p?t???r?131?r2???1r?r??????2.29167?1.04167?0.41667??10?3?100cos??t?200cos??t??2??????251.1537?2.1386?2?2??012000.31386?62.772cos??t??2??2548.97748.9?3.0401?2?????u1???i?13?ri?1ifr 2r?1ki?mi?31??1?100?0.68614?100?0.31386?100?cos??t?
537?2.1386?21??????1?0.5?0.5??100cos??t?
2400?2?20.31386???0.3138?0.68614?1??100cos??t? 2?7748.9?3.0401???200cos??t?????N?1?537?2.1386?2?????????????0??????????????????????????????N?2?N?3 ?19.7010cos??t????????????27748.9?3.0401??
- 39 -
结构动力学作业
阶数 激振频率 N=1 0.3742 0.4966 -0.1102 N=2 0.3742 0.4966 -0.1102 N=3 0.3749 0.4992 -0.1057 ??0 ??0.5?1 ??1??1??2? 2
3.11 当3.10 题中的柔度矩阵为
?2.291671.041670.41667??1??10?3
1.041671.041670.41667?a???k???????0.416670.416670.41667??(1)用模态加速度法,确定u1响应的表达式;
(2)像3-10题一样,列出当激励频率分别为??0,??0.5?,??幅随截取模态数变化的表格,并对结果加以分析。 解(1)u1??a111??1??3?时的u1的振2a12a13?p?t???r?131?r2?? ?1r?r??????2.29167?1.04167?0.41667??10?3?100cos??t?
200cos??t??2??????
251.1537?2.1386?2?2??0 12000.31386?62.772cos??t??2?? 2548.97748.9?3.0401?2?????N?1????0.7965cos?t????N?2??????2???537?2.1386?2???N?3 ??0??????????????????????????????????????????????0.0077cos??t?2??????????????????????2?7748.9?3.0401??
?0.37500cos??t???? - 40 -
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库结构动力学哈工大版课后习题解答(8)在线全文阅读。
相关推荐: