第三章 多自由度系统
l??V1?mg?y??1?;
2??(2)BC杆的动能:
21?l??112?2???T2?m?y?ml?2; 2??2?2?212BC杆的势能:
l??V2?mg?y??2?;
2??(3)三根弹簧的势能:V3?1?22k?y?l?1???y?l?2??y2?;
?2?(4)L?T1?T2??V1?V2?V3?; 由拉格朗日方程可得:
??2m???ml?2??ml??2?ml2ml230ml?2?????y??3k?kl?????20????klkl??1????????kl02??2??ml?3???ml2ml230????2mg?kl??y???1????0????1???2mgl?;
????kl2????2??1??mgl???2???2m??ml令 M???2??ml??22(5)由K??M?0
ml?2???3k??kl0????????K?????kl2?ml?3???klkl20kl?0??; kl2??令??m22???1?6??6?? ??1?2?6k? 03?32k,?1?3?36m13k2解得: ?2?,?2?
2m?1????3?固有频率:
3?3k,?32?3?36m???1?1.1260
kkk; ?,???2?1.7321?,??3?2.1753mmm- 31 -
结构动力学作业
固有振型:
?3?3??3?3?l?l???????33????123??????????????1?????????1????????????1?
?????????????11?????1??????????????3.5试求图3-13所示系统的振动方程,并求其固有频率和固有振型。
解:(1)以?1?,?2,?3为广义坐标, 建立系统的运动微分方程:
系统的动能:
K1 K2 K3 T?1?21?21?2I1?1?I2?2?I3?3 22211122K1?12?K2??2??1??K3??3??2?; 222I3
图3-13 系统的势能:
I2
I3
V?L=T-V;
由拉格朗日方程得:
?I1?0???00I20???K?K0????112?????????K0???22??????0I3?????3??K2K2?K3?K30???1??0????? ?K3????2???0?????K3????3??0?(2)当 I1?I2?I3?I,K1?K2?K3?K时
可得固有频率:
?1?0.4450固有振型:
III ?,??2?1.2471?,??3?1.8019KKK?????1????????1????????1?1?????2??0.445?????3???1.247?
1.802???????????????????2.247????0.802???0.555??
3.6图3-14所示的两均质杆是等长的,但具有不同的质量,试求系统作微振动的振动方程,若m1?m2?m,?k1?k2?k,试求系统的固有频率和固有振型(设选取两杆的转角?1和?2为广义坐标,其中?1以顺时针方向为正,?2以逆时针方向为正)。
- 32 -
第三章 多自由度系统
解:(1)系统的动能:
3l 4l 411?2?1(1ml2?1ml2)??2T??m1l2?12222321216
1?2?7ml2??2?????m1l2?122696
(2)系统的势能:
223ll44图2-21 l41?33?1?1?11V?k1?l?1?l?2??k2?l?2??m1gl?1?m2gl?2 2?44?2?2?24(3)建立系统的运动微分方程:
由拉格朗日方程
l 4l 2ld??L??L?0 ????i??qidt??q?12??3?33?1ml??kll??l?2??m1gl?0111?1?3444???2 ???7ml2????3kl?3l??3l???1kl2??1mgl?0221?12?222?4?44?44?48由条件m1?m2?m,?k1?k2?k,将上述方程整理 得:
?12?3ml??0????92kl?????????161???????7??2????9kl2ml2????48??160?92??1?kl?mgl???1???2?16??????;
132???2??1klmgl????16?4??从系统的特征方程解得
固有频率
?1?0.6505固有振型
kk; ????????2?2.6145mm??????1??1?2???????????????????3.0508?
0.7492????1
- 33 -
结构动力学作业
3.7试从矩阵方程
?K??x?j????j2?M??x?j??
出发,左乘?K??M?,利用正交关系证明
?1?x???K??M???K??x????0 i=1,2,??,n
?i?T?1hj其中n为系统自由度数。 解:由式 ?K?x??????j2j?M??x?j??可得:
?M??K??x?j????j2?x?j??;
?1??K??M???K??x????K??M??????????????????????????????????????????K??M?????????????????????????????????????????K??M??????????????????????????????????????????K??M??1h?j??1h?1?1h?1?1h?12?1h?1j??K??M???K??x???K??M??K??x????K???x?? ??K??x??1?j??1?j?2?j?j?j???????????????????????????????????????j2h?K?x??i?T?1h???j?x???K??M???K??x????x??K??x???
?j?2h?i?Tjj由正交关系可知:
?j2h?x??K??x????0f?t?
?i?Tj?x???K??M???K??x????0
?i?T?1hj结论得证.
3.8图3-15中简支梁有三个置于它的四分之一点处的质量。试以微小的平动y1?,y2?,y3?作为
位移坐标,梁的自重忽略不计,其弯曲刚度为EI。假设m1?m2?m3?m,求系统的固有频率和固有振型,对振型规范化并画出各阶振型。 解:(1)?ij表示在mj点作用单位力 而在mi点产生的挠度。 利用图乘法可得:
l 4l 4l4x l4 y 图3-15
- 34 -
第三章 多自由度系统
3l?1?33x?x?x4?4?11???44?dx????dx EIEI00l423l3??????256EI同理:
11l37l3?12??21?; ?13??31?;
768EI768EI11l3l33l3?23??32?; ?22?; ?33?;
768EI256EI48EI(2)以各小竖向位移y1,?y2,?y3为广义坐标,建立系统的运动微分方程:
y1??12m2??y2??13m3??y3?y1???11m1???y1??22m2??y2??23m3??y3 ?y2???21m1???y???m??????311y1??32m2y2??33m3y3?3整理成矩阵形式:
?3l3?256EI??11l3?768EI?3?7l?768EI?固有频率:
11l3768EIl348EI11l3768EI7l3?768EI???my??1??100??y1?311l????2???010??y2??0; my??????768EI?????3???my001?y3?3??????3l?256EI???1?4.9330固有振型:
EIEIEI ?,????19.5959?,???41.606423ml3ml3ml3?????1?????1????????1?1?????2?????0?????3???1.4142?
1.4142???????????????????????1?????1?????????1??123????????? ????????正规化:
- 35 -
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库结构动力学哈工大版课后习题解答(7)在线全文阅读。
相关推荐: