因为X和Y相互独立,所以有E(X?Y)?E(X)?E(Y),又 E(X2Y2)??????22xyf?????(x,y)dxdy????2??2xfX(x)dxyfY(y)dy??????E(X2)E(Y2),
从而有 D(XY)?E(X2)E(Y2)?E2(X)E2(Y)
2222222? ???E(X)?E(X)?E(Y)?E(X)E(Y)?E(X)E(Y)22 ?D(X)E(Y2)?E2(X)?E(Y)?E(Y)???22??D(X)E2(Y)?E2(X)D(Y) ?D(X)?E(Y)?E(Y)???D(X)D(Y)?E2(X)D(Y)?E2(Y)D(X).
34.设随机变量X和Y都只取两个数值,则X和Y不相关时,X和Y互相独立.
证明:X和Y都服从二点分布,记X?a,表示A发生,X?b,表示A不发生;同样,记Y?c,表示B发生,Y?d,表示B不发生;则有
X ab
Y cd P
P(A)P(A) X Y P P(B)P(B) bd acadbcP
P(AB)P(AB)P(AB)P(AB) E(X)?aP(A)?bP(A),E(Y)?cP(B)?dP(B),
E(X)E(Y)?acP(A)P(B)?adP(A)P(B)?bcP(A)P(B)?bdP(A)P(B); E(XY)?acP(AB)?adP(AB)?bcP(AB)?bdP(AB);
当X和Y不相关时,Cov(X,Y)?E(XY)?E(X)E(Y)?0,?E(XY)?E(X)E(Y);
由于a,b,c,d取值的任意性(不妨取a?b?1,c?d?0),可得P(AB)?P(A)P(B),即事件A,B相互独立,从而A,B,A,B之间两两独立.于是
P(X?a,Y?c)?P(AB)?P(A)P(B)?P(X?a)P(Y?c),
P(X?a,Y?d)?P(AB)?P(A)P(B)?P(X?a)P(Y?d), P(X?b,Y?c)?P(AB)?P(A)P(B)?P(X?b)P(Y?c), P(X?b,Y?d)?P(AB)?P(A)P(B)?P(X?b)P(Y?d),
故 X和Y互相独立.
35.设随机变量(X,Y)的概率密度为
?1,|y|?x,0?x?1 f(x,y)??其他?0,(1)求fX(x),fY(y);(2)求E(X),E(Y),E(XY),D(X),D(Y); (3)讨论(X,Y)的相互独立性和相关性. 解:(1)fX(x)??????f(x,y)dy??1?dy?2x,(0?x?1),
?x?xfY(y)?????????11?dx?1?y,(0?y?1)??y ; f(x,y)dx??1??1?dx?1?y,(?1?x?0)??y10(2) E(X)????xXf(x)d?x?222x?dx,
310E(Y)??y(1?y)dy??y(1?y)dy?0;
?10E(XY)??E(X2)???????????xyf(x,y)dxdy??dx?011??2x3dx?, 021?x?xxydy?0;
??2xfX(x)dx??E(Y2)??y2(1?y)dy??y2(1?y)dy??10011; 61?2?1D(X)?????,2?3?18211D(Y)??0?;
662(3)cov(X,Y)?E(XY)?E(X)E(Y)?0??0?0,?3?XY?0,
即(X,Y)不相关,但fX(x)?fY(y)?f(x,y),故(X,Y)不相互独立.
36.设随机变量(X,Y)的概率密度为
?2?x?y,0?x?1,0?y?1, f(x,y)??其他.?0,求相关系数. 解:fX(x)????????fY(y)??E(X)??????3x?y)?dy?,?x( 00213f(x,y)dx??(2?x?y)dx??y,(0?y?1)
02f(x,y?)?dy?(?21x1)??5135; xfX(x)dx??x(?x)dx?,同理 E(Y)?018212E(XY)???????????xyf(x,y)dxdy??1dx?1xy(2?x?y)dy100?6; E(X2)????x2fX(x)dx??1x2(3?x)dx?1,同理 E(Y21??024)?4; 1522故 D(X)????114?,同理 1?5?11144;
?12???144D(Y)?4???12??? cov(X,Y)?1556??112?12?144; 所以有 ?cov(X,Y)?1/144?1XY?; D(X)D(Y)?11/14411/144?1137.设随机变量(X,Y)的概率密度为
?f(x,y)??1?(x?y),0?x?2,0?y?2
?8?0,其他求E(X),E(Y),D(X),D(Y)、cov(X,Y)、?XY和D(X?Y). 解:ff(x,y)dy??21(x?y)dy?x1X(x)??????084?4,(0?x?2)
f???Y(y)???f(x,y)dx??2108(x?y)dx?y14?4,(0?y?2)
E(X)????xf?2x177??X(x)dx?0x(4?4)dx?6,同理 E(Y)?6;
E(XY)??????22???xyf(x,y)dxdy??14??0dx?0xy8(x?y)dy?3;
E(X2)??????x2fX(x)dx??20x2(x4?14)dx?53,同理 E(Y2)?53; 2D(X)?53???7??6???1136,同理 D(Y)?1136;cov(X,Y)?43?76?76??136; 所以有 ?cov(X,Y)XY?X)D(Y)??1/36?111/3611/36?11;
D( D(X?Y)?D(X)?D(Y)?2cov(X,Y)?1136?1136?2?1536?9. 38.若随机变量X1,X2,?,Xn相互独立,且E(Xi)??D,X(i?)?2,i=1,1n2X?21n2,验证:(?n?Xi,S?1)E(X)??,D(X)?; i?1n?1?(Xi?X)i?1n2,?,n.令
(2)S2?1nn?1?(X2i?X2);(3)E(S2)??2. i?1证明:(1)由已知条件及独立性,可得
?E(1n1nE(X)1nn?Xi)??E(Xi)?i?1n????,
i?1ni?12D(X)?D(1?nX?1?i)????nD(X1n2??2ni)?i?1?n?1n2??i?1n; i?(2) 2nnS?1n?1?(X2122i?X)?n?1(Xi?2Xi?X?X) i?1?i?1?1nn?1(?X2nnX21n2nn2i?2 i?1?Xi?i?1?X)?i?1n?1?Xi?2XX?Xi?1n?1n?11n?2n21n22n?1?Xi?X?1?(Xi?X); i?1n?1n?i?1(3) E(S2)?E?n?1?(X?nni2?X2)??11?E(Xi2?X2)?1i?1??E(Xi2)?E(X2)?,
?n?1i?1?n?n?1i?1由于 ?2?D(Xi)?E(iX2)?2E(iX?)Ei(2X??)2?,Ei2(?X?),2? ?同理
?222222n?D(X)?E(X)?E(X)?E(X)??,?E(X)??22n??,
所以 1n2E(S2)??2?n????2???(??)???2?1n(n?1)?21(n?1)?2.1i?1??n?n?1????n??i?1nn?1n39.设E(X)?E(Y)?1,E(Z)??1,D(X)?D(Y)?D(Z)?1,?XY=
12,?1XZ=?2,E(X?Y?Z)和D(X?Y?Z).
解:E(X?Y?Z)?E(X)?E(Y)?E(Z)?1?1?1?1; D(X?Y?)Z??E(X??Y)Z?(E?X?2 ?Y)Z ?E??X?E(X)?2??Y?E(Y)?2??Z?E(Z)?2 ?2?X?E(X)??Y?E(Y)??2?Y?E(Y)??Z?E(Z)??2?X?E(X)??Z?E(Z)???D(X)?D(Y)?D(Z)?2cov(X,Y)?2cov(Y,Z)?2cov(Z,X)
?3?211?21?1?221?1?2??1??1?1?4. ?2??=1YZ2,求 2
110040.设随机变量X~N(100,0.2),对X作100次独立观测,观测值为X1,X2,?,X100,令X?xi,?100i?12
利用契贝谢夫不等式估计P{|X?100|?0.1}.
解:因为X~N(100,0.22),且X1,X2,?,X100相互独立,所以
11001100E(X)?E?xi??100?100, ??100i?1100i?1100110010.222 D(X)?, Dx?0.2?2??i?2?100100i?1100i?1取??0.1,由契贝谢夫不等式,有
0.22D(X) P{|X?E(X)|??}?1??P{|X?100|?0.1}?1?100?0.96. 22?0.1
第五章 大数定理与中心极限定理
1.设某系统由30个元件R1,R2,?,R30组成,若R1损坏R2立即启动,若R2损坏则R3立即启动,?,每个元件的寿命Xi(i=1,2,?,30)为服从参数?=0.1的指数分布,且X1,X2,?,X30相互独立.求系统总寿命T超过350的概率.
30111?10,D(Xi)?2?2?100,系统总寿命为 T??Xi,解:由已知条件,E(Xi)???0.1?0.1i?11由林德贝格-列维中心极限定理知T?N(10?30,100?30),所以 P{T?350}?1?P{T?350}?1??(?350?300)?1??(0.91)?1?0.8186?0.1814. 30002.设某部件由10个部分组成,每部分的长度Xi为随机变量,X1,X2,?,X10相互独立同分布,E(Xi)=2毫米,D(Xi)=0.5毫米,若规定总长度为(20±1)毫米是合格产品,求产品合格的概率. 解:设总长度为T?10?Xi,则
i?1210E(T)??E(Xi)?2?10?20,
i?1?10D(T)??D(Xi)?(0.5)?10?2.5,同第1题,知T?N(20,2.5),
i?1
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库概率统计题解(全)(9)在线全文阅读。
相关推荐: