??2 . 解:参考第12题,可知 D(X)???2???2??????1??x20.设随机变量X服从参数为?、?的Γ分布,其概率密度函数为f(x)???(a)(?x)e,x?0
???0,x?0其中?>0、?>0为常数,求E(X)和D(X). 解:利用Γ函数的性质: E(X)??????xf(x)dx??(a)???t??x?????xxedx????0?????t1?(a?1)?;
tedt???0??(a)???(a)? E(X)?2?(a)?2??t??x????1??x????1xedx????2t0???(a)0?1te?dt??(a?2)?(??1),
??2??(a)?22?(??1)??. D(X)?E(X)?E(X)????2?2?22?2?2cosx,?|x|?, 求E(X)和D(X). 21.若随机变量X的概率密度为f(x)???2?其他.?0,解:E(X)??????x?f(x)dx?2???2??2(奇函数在对称区间上的积分为零) x?cos2xdx?0;
?? D(X)?E(X)?E(X)?E(X)???2222x????22?cosxdx?222x?0?2?(1?2cos2x)dx
?2x320?3?2x2sin2x??2?022??02????2?2?x12?21. ?xsin2xdx???cos2x??cos2xdx???012??22122??0??222.设球直径的测量值在[a,b]上服从均匀分布,求球体积V的均值.
解:设球的直径为X,其概率密度为f(x)??则球的体积是 Y?g(X)??X6??3?1,a?x?b , ?b?a?其他?0,,利用随机变量函数的期望公式,可得
bE(Y)?E[g(X)]????1b?x3?x4g(x)f(x)dx?dx??b?a?a66(b?a)4?a?24(a?b)(a2?b2)(习题二第36题)
23.证明D(X)?E?(X?C)2?,其中常数C?E(X).
??证明:因为 C?E(X) 所以?E(X)?C?2?0?E2(X)?2CE(X)?C2?0
?E(X2)?2CE(X)?C2?E(X2)?E2(X)?E(X2?2CX?C2)?D(X)2?. ?E?(X?C)???D(X)2x??22b24.气体分子运动速度X服从马克斯威尔分布,概率密度函数f(x)?? ?Axe,x?0,b?0为已知常数,?其他?0,(1)试确定系数A;(2)求E(X)和D(X). 解:参考本节第12题的积分计算方法,(1)1?x2??2 ??Ab??xeb2??2??xb???exb??f(x)dx?A?2??2xe0?x2b2dxAb??22?0??xe?x2?b2d?x2? ??b2??????0???0e?Ab2?dx??2???x2b2dx23?0???4; xAb3?,于是
A?3d()??b?b222(2)E(X)??????x?f(x)dx?A???3xe0?Ab24?0??xeb22?x22b2d(x)2bxxAb?Ab42b?x2?b2?b2??; ????2e?e??2?b2????04x2?x22???2?2???3b3b22b2bxedx???Axedx?002222??E(X2)????2x???f(x)dx?A???4xe0?x2b2dx??Ab22???3xe0?x22x2bd(?)2b??Ab?2??2?x2??3b2xe???3?0???,
D(X)?EX(2?E)23b2?2b??3X(?)??????2?2????2?4.2
?b?25.在长为l的线段上任意取两点,求两点间距离的期望和方差.
解:将此线段置于数轴上,与区间[0,l]重合,任取两点的坐标分别为X,Y(0?X?l,0?Y?l),又设随机变量Z为两点间的距离,则Z?|X?Y|,Z的分布函数为 F(z)?P{Z?z}?P{|X?Y|?z}. 点(x,y)在xoy坐标平面上的一切可能位置充满如图以l为边长的正方形.而事件x?y?z相当于y?x?z,y?x?z,即点(x,y)落在图中阴影部分,故得
l2?(l?z)2z2(0?z?l) F(z)?P{|X?Y|?z}? ?1?(1?),
ll2Z的分布密度为f(z)?F?(z)?2(1?z),(0?z?l)
ll??22z2?z2z3?l 2l2z2?z3z4?l2 2E(Z)??z?f(z)dz??z(1?)dz??????3E(Z)????z?f(z)dz?l?0z(1?l)dz?l??3?4l???6??l0ll?23l??0??0??llll2 D(Z)?E(Z)?E(Z)?622l2?l?????. ?3?18?(y?5)2?e?2x,0?x?126.设随机变量X和Y相互独立,概率密度分别为fX(x)??fY(y)???0,其他?0,y?5,求E(X?Y). 其他.????2) E(Y)??yfY(y)dx??y?e?(y?5dy??ye?y(???0??532由于X和Y相互独立,所以E(X?Y)?E(X)?E(Y)??6?4.
3解:E(X)????xfX(x)dx??x?2xdx?1??5)5)??e?y?(dy5?5?1?6 5??27.若随机变量(X,Y)的概率密度为f(x,y)?A,???x???,???y??? 222(1?x?y)(1)确定常数A;(2)D(X)和D(Y)是否存在? 解:(1)1???????????f(x,y)dxdy?A?????dx?????1dy,
(1?x2?y2)2利用积分公式
dxx1xdxdy??arctan?C,可得 ?(a?x2)222a(a?x)2aaa???y? 1?A?dx?22??2(?1x?)x(1?y???21)22(?1x2?y?arctan? 31?x2?)????????A????2(1?322x)??dx?A????01(1?322x)dx?A??????x(1?x2)02?A?,故A?1;
?(2) E(X)????????????xf(x,y)?dx?dy??xAdy???(1?x2?y同理E(Y)?0;从而D(X)?E(X2)??2????2x??????f(x,y)dxdy?)12 ?, 0(奇函数)dx??2??xdx????(1????1dy 222x?y)?x??1??2?x2????lnx?(1?x)??x?dx?dx?0332?????(1?x)2(1?x2)2(1?x2)2??????, ??0??同上知, D(X)?D(Y)?? (不存在).
28.已知D(X)=25,D(Y)=36,?XY=0.4,求D(X?Y)和D(X?Y). 解:注意协方差与相关系数的公式 ?XY?cov(X,Y),
D(X)D(Y) cov(X,Y)?E?X?E(X)??Y?E(Y)??E(X?Y)?E(X)?E(Y);
所以 D(X?Y)??E(X?)Y?(E??X)Y???2E??X(?2E)?X???
22Y()EY22?E?X?E(X)???Y?E(Y)??2?X?E(X)??Y?E(Y)??E?X?E(X)??E?Y?E(Y)??2E?X?E(X)??Y?E(Y)?
??
?D(X)?D(Y)?2Cov(X,Y)?D(X)?D(Y)?2?XYD(X)?D(Y) ?25?36?2?0.4?25?36?85; 同理可求出
D(X?Y)?D(X)?D(Y)?2?XYD(X)?D(Y)?25?36?2?0.4?25?36?37. 29.若随机变量(X,Y)在区域D上服从均匀分布,D?{(x,y)|0?x?1,0?y?x},求?XY. 解:因为(X,Y)在区域D上服从均匀分布,其密度函数为 f(x,y?)?且 1??则有
?)D?A,(x,y,
?0,x(y,?)Df(x,y)dxdy?A?dx?1?dy?A1x1?A?2;
?????002????1x12E(X)???x?f(x,y)dxdy?2?xdx?dy?2?,
????0033????1x11E(X2)???x2?f(x,y)dxdy?2?x2dx?dy?2?,
????0042????1x11E(Y)???y?f(x,y)dxdy?2?dx?ydy?2?,
????0063????1x11E(Y2)???y2?f(x,y)dxdy?2?dx?y2dy?2?,
????00126????1x11E(XY)???xy?f(x,y)dxdy?2?xdx?ydy?2?,
????0084????12?11?1?1 D(X)?E(X)?E(X)???,, ?D(Y)???????2?3?186?3?182222 cov(X,Y)?E(XY)?E(X)E(Y)?从而 ?XY?1211, ???43336covX(Y,)?D(X)DY()1/361/36??.
1/1811//11882130.设随机变量(X,Y)服从二维正态分布f(x,y)?1?e2??x2?y22,???x???,???y???.求
Z?X2?Y2的期望和方差.
解:由随机变量函数的期望公式 E(Z)???????????x2?y2?1?e2??x2?y22dxdy?12??02?d????0re?r22rdr
?1?2??2?r2???rd(?e20r??)???re2??2r????????e2dr?; 0?2?0??2又 E(Z2)????????????x2?y2?2?1?e2??x2?y22dxdy?12??02?d??????2re0?r22rdr
?1?2??2?r2???2rd(?e20r??)???r2e2??r???r?????2?e2rdr?2?e20???0???22???2, ??0于是有 D(X)?E(X2)?E2(X)?2??2.
31.若随机变量X、Y相互独立同分布,均服从N(?,?2),令???X??Y,???X??Y求随机变量?与
?的相关系数???.
解:依题意,有 E(X)?E(Y)??,D(X)?D(Y)??2,且Cov(X,Y)?0. 因为 ????co?v?(,)E???(E?)E?(, )()?D(?)D?()D?()?D()而 E(?) ??E?(X??Y)??E(X?)?E(?Y)??(,? E(?) ??E?(X??Y)??E(X?)?E(?Y)??(.? E(??)?E(?X?由方差公式可求出
2 E(X)??Y)(?X??Y?)22E(?X?22?Y?)22?E(?X)2,? E(Y)D(?X)22222E(??X)??, 同理可得 E(Y)????,
所以 E(??)??2(?2??2)??2(?2??2)?(?2??2)(?2??2). 又 D(?)?D?(X??Y)?2?D(X?)2?综合上述结果,可得 ????2,同理有D(?Y)?(?2??)D(?)?(?2??2)?2,
(?2??22)?(???2)??(???)??(?2(?2??2)?(??2?)?222?)??2(?2?2)??. ?2?2222(???)????232.设随机变量X和Y相互独立,试证明
D(X?Y)?D(X)D(Y)?E2(X)D(Y)?E2(Y)D(X).
证明:D(X?Y)?E?(XY)?E(XY)??E(XY)2?2XYE(XY)?E2(XY) ?E(XY)2?2E(XY)E(XY)?E2(XY)?E(X2Y2)?E2(XY),
2??
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库概率统计题解(全)(8)在线全文阅读。
相关推荐: