且有:
?nn?1?2n?1x???n????n?1???1?1?x,
????nx???x?nx???x??2?3?n?1??n?1????1?x???1?x????所以E(X2)??xk2pk??k2pqk?1?p?k2qk?1?p?1?q?1?q?1.2?1.875,
?1?q?3p20.82k?1k?1k?1 D(X)?E(X)??E(X)??1.875?1.25?0.3125.
2224.若随机变量X的分布律为 求E(X)、E(X 2)、E(3X 2+5).
3X pk -2 0 2 0.4 0.3 0.3 解:E(X)??xkpk?(?2)?0.4?0?0.3?2?0.3??0.2;
k?123E(X)??xk2pk?(?2)2?0.4?02?0.3?22?0.3?1.6?1.2?2.8;
k?1由期望公式的性质可得E(3X2?5)?E(3X2)?E(5)?3E(X2)?5?3?2.8?5?8.4?5?13.4. 5.盒中有3个白球和两个黑球,从中任取两球,求取到的白球数X的期望.
2?kC3k?C2解:由已知条件,取到的白球数X可取值0,1,2,其概率公布为P{X?k}?,k=0,1,2.
C52021120C3?C2C3?C2C3?C23?23!/2!所以其期望为:E(X)?0??1??2???2??1.2. 2225!/2!3!5!/2!3!C5C5C56.若X的分布律为P{X?k}??11,其中k为正整数,求E(X). ?ln2k?2k??1111112?1. 解:E(X)??k?P{X?k}??k??????ln2k?2kln2k?12kln21?1ln2k?1k?127.设随机变量X的分布律为P{X?(?1)?j?13jj}?2(j?1,2,?),说明X的数学期望不存在. j3?解:由期望定义,若
?|xi|pi收敛,则称级数?xipi的和为随机变量X的数学期望,但在本题中
i?1i?1j?13?|xi|pi??(?1)i?1j?1??j?13jj?P{X?(?1)3j2?2 这是发散的调和级数,随机变量X的数学期望不存在. }???j??jj?1j3j?1j?jak8.若随机变量X的概率分布为P{X?k}?,a>0为常数,k=0,1,2,?求E(X)和D(X). k?1(1?a)解:参考第3题解法,有E(X)??k?P{X?k}?k??k?0k?0??aka??a???k???(1?a)k?1(1?a)2k?0?1?a?k?1?a1??a 22(1?a)?a??1???1?a?(注意此题k从0开始,仍有
n?0?nxk?1?n?1??n???1??1) ???x?????2?n?0??1?x??1?x?a222aaaD(X)?E(X)?E(X)?a(1?2a)?a?a(1?a) 222?a???1?aE(X)??k??k????a(1?2a)??k?12?23(1?a)(1?a)k?0?1?a?(1?a)?a?k?0?1???1?a??k?1?9.若袋中有m个白球和n个黑球,每次从中任取一球,然后放回,直到取到白球为止,求取出的黑球个数X的期望和方差.
解:因为是有放回的任取,所以黑球个数X服从p?m的几何分布: n?m pk?P{X?k}?qkp k=0,1,2,?,∞,其中p?q?1. E(X)??kpqk?pq?kqk?1?pq?k?0k?0??1?1?q?2?qn/(n?m)n; ??pm/(n?m)mq?1?q?n?m?2n?1?q2? E(X)??kpq?pq?kqk, ?1pq???3222?2k?k?0k?1?1?q?pm D(X)?E(X??)2n?m?2?nn2E?(X?)?2?2mm2?n?m?. nm2?1,|x?a|?l(2)f(x)?1e?|x|,???x???. 10.若随机变量X的概率密度为:(1)f(x)???2l2?其他?0,分别求E(X)和D(X). 解:(1)E(X)????xf(x)dx??a?l??a?l11x2x?dx?2l2l2a?l?a;
a?l D(X)?E[X?E(X)]2??a?l22x?a?f(x)dx ?????11?x?a????x?a??dx??a?l2l2l3(2)E(X)????3a?la?l12l3l2.
???2l33?01??1101??1x?e?|x|dx??xexdx??xe?xdx?xex?ex??xe?x?e?x?0;
??????2022??202?01??????21?|x|102x1??2?x12x2xx2?x?x?xD(X)???x?0?f(x)dx??x?edx??xedx??xedx?xe?2xe?2e??xe?2xe?2e?2
??????2022??202xf(x)dx????????????.
11.若随机变量X服从参数为
1的指数分布,求E(X)和D(X). ????1?1xxxxx??????????????1x?xx解:因为f(x)??e,x?0,有E(X)? xf(x)dx??x?e?dx???ed????e??e????;????00???????0,??0x?0???2x2x?1??2???x??dx?edx??e??0?????xx2??x?2?x22??x??22 D(X)?E(X)?E(X)??2????????????e?2e?2e??2?????????02??E(X2)???x0?2?? 2x?12.设轮船横向摇摆的振幅X的概率密度为f(x)??Axe?2?2,x?0,??0为常数.
??x?0?0,试确定常数A,并求E(X),D(X),P{X?E(X)}. 解:1??????f(x)dx????0Axe?x22?2dx?x2?2?x2??A?2e2?d??2?20??x?2?22?????A?e?2???A?2?A?01;
?2x22?2dxx22?2dx
E(X)??????x?f(x)dx????0x?x?2x2?2e2?dx??x2?2???xe2?d??0x?2???2??2x2?2??xe2?????0???0e?????0e?2??e?tdt?2??0??2???x2?) ????(这里利用了积分公式:?edx?0222D(X)??2x?E(X)??f(x)dx?????0?????x??x?2?2
dx??x?2?????2e??22???2???0xx????2?2?x2????2?2d???2?2??????x?2???e?x?2???e??????x22?2dx?2x22?2dx2222???2?0???0x???2?2
dx??x?2???e??2??2?2???0xe??2?????0e??2?2?2??2?2?2?????????2???2; 22??2 P{X?E(X)}???f(x)dx??????E(X)2x??2e?x22?2dx??e?x22?2???????2??????22??e?e??4 .
?2??e?x,x?0,Y?2X;13.设随机变量X的概率密度f(x)??求下列随机变量函数的期望:(1)(2) Y?e?2X.
x?0.0,?解:(1)E(Y)?E(2X)?2E(X)?2? (2)E(Y)?E(e?2X)??
???2xe????0x?e?xdx?2(?x?e?x?e?x)???2xe0??0?2;
?f(x)dx????11?e?xdx??e?3x?.
03314.设(X,Y)的联合分布为
X Y -1 0 1 1 2 3 0.2 0.1 0 0.1 0 0.3 0.1 0.1 0.1 (1)求:E(X)、E(Y);(2)设Z=Y/X,求E(Z);(3)设W??X?Y?2,求E(W). 解:(1)由联合分布可分别求出X和Y的边缘分布为
X P 1 2 3 0.4 0.2 0.4 Y P -1 0 1 0.3 0.4 0.3 所以 E(X)?1?0.4?2?0.2?3?0.4?2; E(Y)???1??0.3?0?0.4?1?0.3?0; (2)由于Z的概率分布为
Z=Y/X -1 0 1 -1/2 0 1/2 -1/3 0 1/3 P 0.2 0.1 0.1 0.1 0 0.1 0 0.3 0.1 所以 E(Z)???1??0.2?(?1)?0.1?(?1)?0?0?(0.1?0?0.3)?1?0.1?1?0.1?1?0.1??1;
233215(3)同理,当X和Y分别取值1,2,3和-1,0,1时,W??X?Y?2对应取值: 0,1,4,9,16,其概率分布为
W??X?Y? 0 1 4 9 16 2
所以 E(W)?0?0.1?1?0.2?4?0.3?9?0.4?16?0?5.
P 0.1 0.2 0.3 0.4 0 15.箱内有4个白球和5个红球,不放回地接连从箱中2次取球,第1次取出3只球,第2次取出5只球.设X和Y分别表示这2次取出球中的白球数,试对i?1,2,3,4求E(X|Y?i).
解:条件期望E(X|Y?i)的含义是:在已知第二次取出的5只球中有i个白球的情况下,第一次取出3只球中平均白球数是多少?为对i?1,2,3,4求得条件期望E(X|Y?i),先要求得Y?i条件下X的条件分布,若Y?1,即第二次抽取5只球中只有1只白球,其余4只是红球,因此第一次抽球只能在3只白球和1只红球中随机抽3只球,这时X至少为2,因为红球只有1个,故P{X?0|Y?1}?P{X?1|Y?1}?0,
213C3?C13C31由此得Y?1下的条件期望E(X|Y?1)?2?3?3?1?9. P{X?2|Y?1}??P{X?3|Y?1}??334444C44C4类似可计算另外三个条件分布和三个条件期望,结果如下
j P{X?j|Y?1} P{X?j|Y?2} P{X?j|Y?3} P{X?j|Y?4} 0 1 2 3 0 0 1/4 1 0 1/2 3/4 0 3/4 1/2 0 0 1/4 0 0 0 E{X|Y?i} 9/4 3/2 3/4 0 16.接连掷1颗均匀骰子,设X和Y分别表示首次获得6点和5点所需的投掷次数.求E(X), E(X|Y?1).解:已知X为首次获得6点的投掷次数,其分布为P{X?k}?p?1?p?k?1,k?1,2,?,p?1
6这是几何分布,其期望E(X)?1?1?6.又设Y为首次获得5点的投掷次数,如“Y?1”表示“第1
p1/6次投掷就出现5点”这一事件,在这个条件下,X的条件分布为P{X?k|Y?1}?p?1?p?k?2,k?2,3,?,p?1
6它的条件期望P{X|Y?1}??k?1?5???6?6?k?2??k?2??k?p?1?p?k?2??k?21?5????k?1????6?6?k?2??k?21???5?????6k?2?6?k?211?E(X)???6?1?7
61?5617.设二维随机变量的联合密度函数为
?e?y,?f(x,y)??y?0,???0?x?y???计算E(X3|Y?y).
其他解:先计算边缘密度f(y)和条件密度f(x|y),f(y)????f(x,y)dx??ye0?yydx?e?y,y?0,
3而在y?0时,有f(x|y)?f(x,y)?1,0?x?y,E(X3|Y?y)???x3?f(x|y)dx?yx3?1dx?y,y?0 .
????0f(y)yy4?1m?x18.已知随机变量X的概率密度f(x)??m!xe,??0,?x?0求E(X)D(X);证明P{0?X?2(m?1)}?m.
m?1x?0解:本题计算要用到Γ函数的相关性质: ?(x)??当x取正整数时,?(k)?(k?1)! ;?(1)??.
2??x?1?ttedt0??tx?1e?t??0?(x?1)???x?2?ttedt0 ?(x?1)?(x?1),
从而有:E(X)?????x?f(x)dx?1?m?1?x1(m?1)!xedx??(m?2)??m?1; ?0m!m!m!1?m?2?x1(m?2)!xedx??(m?3)??(m?2)(m?1), m!?0m!m! E(X2)?????x2?f(x)dx? D(X)?E(X2)?E2(X)?(m?2)(m?1)?(m?1)2?(m?1). 证明后一个结果,要利用契贝谢夫不等式:P{|X?E(X)|??}?1?D(X),
?2由于E(X)?D(X)?m?1,取??m?1,有P{|X?(m?1)|?m?1}?P{0?X?2(m?1)}?1?m?1?m
?m?1?2m?1?x?x22?,?19.已知随机变量X服从瑞利分布,其概率密度为
f(x)???2e?0,?2x?0,(?x?0?0为常数),求D(X).
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库概率统计题解(全)(7)在线全文阅读。
相关推荐: