所以,2007应该出现在第一列或第五列
又因为第251行的排列规律是奇数行,数是从第二列开始从小到大排列,
所以2007应该在第251行第5列
例9.(2006年嘉兴市)定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数
nn
kk
时,结果为2(其中k是使2为奇数的正整数),并且运算重复进行.例如,取n=26,则:
26
F② 第一次
13
F① 第二次
44
F② 第三次
11
若n=449,则第449次“F运算”的结果是__________.
nnkk
分析:问题的难点和解题关键是真正理解“F”的第二种运算,即当n为偶数时,结果为2(其中k是使2
为奇数的正整数),要使所得的商为奇数,这个运算才能结束。
449奇数,经过“F①”变为1352;1352是偶数,经过“F②”变为169, 169是奇数,经过“F①”变为512,512是偶数,经过“F②”变为1, 1是奇数,经过“F①”变为8,8是偶数,经过“F②”变为1,
我们发现之后的规律了,经过多次运算,它的结果将出现1、8的交替循环。
再看运算的次数是449,奇数次。因为第四次运算后都是奇数次运算得到8,偶数次运算得到1, 所以,结果是8。
三、小结
用字母代数实现了我们对数认识的又一次飞跃。希望同学们能体会用字母代替数后思维的扩展,体会一些简单的数学模型。体会由特殊到一般,再由一般到特殊的重要方法。
第4讲:与一元一次方程有关的问题
一、知识回顾
一元一次方程是我们认识的第一种方程,使我们学会用代数解法解决一些用算术解法不容易解决的问题。一元一次方程是初中代数的重要内容,它既是对前面所学知识——有理数部分的巩固和深化,又为以后的一元二次方程、不等式、函数等内容打下坚实的基础。 典型例题:
二、典型例题
例1.若关于x的一元一次方程
2x kx 3k
=1的解是x=-1,则k的值是( ) 32
213A. B.1 C.- D.0
711
分析:本题考查基本概念“方程的解”
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库初一数学复习资料(7)在线全文阅读。
相关推荐: