1111 22 33 42008 20091111111 2233420082009
1 1
20092008
2009
在上述分数连加求和的过程中,我们采用了裂项的方法,巧妙得出了最终的结果.同学们可以再深入思考, 如果题目变成求 值,你有办法求解吗?有兴趣的同学可以在课下继续探究。
例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与 2,3与5, 2与 6, 4与3. 并回答下列各题:
(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:____相等 . (2)若数轴上的点A表示的数为x,点B表示的数为―1,则A与B两点间的距离
分析:点B表示的数为―1,所以我们可以在数轴上找到点B所在的位置。那么点A呢?因为x可以表示任
意有理数,所以点A可以位于数轴上的任意位置。那么,如何求出A与B两点间的距离呢? 结合数轴,我们发现应分以下三种情况进行讨论。
当x<-1时,距离为-x-1, 当-1<x<0时,距离为x+1, 当x>0,距离为x+1
综上,我们得到A与B两点间的距离可以表示为x 1
(3)结合数轴求得x 2 x 3的最小值为 5 ,取得最小值时x的取值范围为 -3≤x_≤2______. 分析:x 2即x与2的差的绝对值,它可以表示数轴上x与2之间的距离。
12 414 616 81
2008 2010
x 3 x ( 3)即x与-3的差的绝对值,它也可以表示数轴上x与-3之间的距离。
如图,x在数轴上的位置有三种可能:
图1 图2 图3
图2符合题意 (4) 满足x x 4 3的x的取值范围为 x<-4或x>-1
分析: 同理x 1表示数轴上x与-1之间的距离,x 4表示数轴上x与-4之间的距离。本题即求,当x是什么数时x与-1之间的距离加上x与-4之间的距离会大于3。借助数轴,我们可以得到正确答案:x<-4或x>-1。
说明:借助数轴可以使有关绝对值的问题转化为数轴上有关距离的问题,反之,有关数轴上的距离问题也可以转化为绝对值问题。这种相互转化在解决某些问题时可以带来方便。事实上,A B 表示的几何意义就
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库初一数学复习资料(3)在线全文阅读。
相关推荐: