(1)求证:△ADB∽△OBC;
(2)连结CD,试说明CD是⊙O的切线; (3)若AB=2,
,求AD的长.(结果保留根号)
17.如图,AB为⊙O的直径,P是BA延长线一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.
(1)求证:△ACD∽△ABC; (2)求证:∠PCA=∠ABC;
(3)过点A作AE∥PC交⊙O于点F,连接BE,若sin∠P=,CF=5,求BE的长.
18.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E. (1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG?AB=12,求AC的长; (3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.
19.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,
第6页(共69页)
连接AC交⊙O于点F,连接AE、DE、DF. (1)证明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度数;
(3)设DE交AB于点G,若DF=4,cosB=,E是
的中点,求EG?ED的值.
20.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC. (1)判断直线l与⊙O的位置关系,并说明理由; (2)若∠ABC的平分线BF交AD于点F,求证:BE=EF; (3)在(2)的条件下,若DE=4,DF=3,求AF的长.
21.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径
(1)判断BC与⊙O的位置关系,并证明你的结论; (2)求证:△ABD∽△DBE; (3)若cosB=
,AE=4,求CD.
22.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒
第7页(共69页)
2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒. (1)当t为何值时,PQ∥BC?
(2)设四边形PQCB的面积为y,求y关于t的函数关系式;
(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由; (4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)
23.如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s). (1)当t= s时,四边形EBFB′为正方形;
(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值; (3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.
24.小明一直对四边形很感兴趣,在矩形ABCD中,E是AC上任意一点,连接DE,作DE⊥EF,交AB于点F.请你跟着他一起解决下列问题:
(1)如图①,若AB=BC,则DE,EF有什么数量关系?请给出证明.
第8页(共69页)
(2)如图②,若∠CAB=30°,则DE,EF又有什么数量关系?请给出证明.
(3)由(1)、(2)这两种特殊情况,小明提出问题:如果在矩形ABCD中,BC=mAB,那DE,EF有什么数量关系?请给出证明.
25.如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒. (1)求线段AC的长度;
(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l: ①当l经过点A时,射线QP交AD于点E,求AE的长; ②当l经过点B时,求t的值.
26.如图,平面直角坐标系中,菱形OABC的边OA在x轴正半轴上,OA=10,cos∠COA=.一个动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,过点P作PQ⊥OA,交折线段OC﹣CB于点Q,以PQ为边向右作正方形PQMN,点N在射线OA上,当P点到达A点时,运动结束.设点P的运动时间为t秒(t>0).
第9页(共69页)
(1)C点的坐标为 ,当t= 时N点与A点重合;
(2)在整个运动过程中,设正方形PQMN与菱形OABC的重合部分面积为S,直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)如图2,在运动过程中,过点O和点B的直线将正方形PQMN分成了两部分,请问是否存在某一时刻,使得被分成的两部分中有一部分的面积是菱形面积的?若存在,请求出对应的t的值;若不存在,请说明理由.
27.在Rt△ABC中,∠C=90°,AB=10,AC=8,点Q在AB上,且AQ=2,过Q做QR⊥AB,垂足为Q,QR交折线AC﹣CB于R(如图1),当点Q以每秒2个单位向终点B移动时,点P同时从A出发,以每秒6个单位的速度沿AB﹣BC﹣CA移动,设移动时间为t秒(如图2).
(1)求△BCQ的面积S与t的函数关系式. (2)t为何值时,QP∥AC?
(3)t为何值时,直线QR经过点P?
(4)当点P在AB上运动时,以PQ为边在AB上方所作的正方形PQMN在Rt△ABC内部,求此时t的取值范围.
28.在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处. (1)求证:△DEB∽△ACB;
(2)当点F与点A重合时(如图①),求线段BD的长;
(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,
第10页(共69页)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库广东省中考数学压轴试卷(第16、24、25题)(2)在线全文阅读。
相关推荐: