77范文网 - 专业文章范例文档资料分享平台

1989-1994年高考数学试题全国卷(4)

来源:网络收集 时间:2019-03-16 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

历年高考数学试题整理 (自我) 试卷版

.

情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a. ⑦

(Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a. ⑧ 由此可知:当a>1时,方程⑧无实根. 当a≤1时解方程⑧得

y=1±

,

从而, 当a=0时,方程⑧有正根 y=2;

当0

.

(Ⅱ)令y<0,方程⑦变为-y2-2y=a,即 (y+1)2=1-a. ⑨ 由此可知:当a>1时,方程⑨无实根.

当a≤1时解方程⑨得

y=-1±

,

从而,当a=0时,方程⑨有负根 y=-2; 当0

所以,原方程的纯虚数解是: 当a=0时,z=±2i; 当0

z=±(1+

)i,z=±(1-)i. 而当a>1时,原方程无纯虚数解.

解法二:设z=x+yi代入原方程得

于是原方程等价于方程组

河北迁安一中由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.

情形1.若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a.

即 | x |2+2│x│=a. ③ 解方程③得

,

所以,原方程的实数解是

.

情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a.

即 -│y│2 +2│y│=a. ④

当a=0时,因y≠0,解方程④得│y│=2, 即当a=0时,原方程的纯虚数解是z=±2i. 当0

,

即当0

.

而当a>1时,方程④无实根,所以这时原方程无纯虚数解.

解法三:因为z2=-2│z│+a是实数,所以若原方程有解,则其 解或为实数,或为纯虚数,即z=x或z=yi(y≠0).

历年高考数学试题整理 (自我) 试卷版

情形1.若z=x.以下同解法一或解法二中的情形1.

情形2.若z=yi(y≠0).以下同解法一或解法二中的情形2.

解法四:设z=r(cosθ+isinθ),其中r≥0,0≤θ<2π.代入原方程得 r2cos2θ+2r+ir2sin2θ=a. 于是原方程等价于方程组

情形1.若r=0.①式变成 0=a. ③

由此可知:当a=0时,r=0是方程③的解. 当a>0时,方程③无解.

所以, 当a=0时,原方程有解z=0; 当a>0时,原方程无零解.

考查r>0的情形.

(Ⅰ)当k=0,2时,对应的复数是z=±r.因cos2θ=1,故①式化为 r2+2r=a. ④

.

由此可知:当a=0时,方程④无正根; 当a>0时,方程④有正根 .

所以,当a>0时,原方程有解

.

河北迁安一中(Ⅱ)当k=1,3时,对应的复数是z=±ri.因cos2θ=-1,故①式化为 -r2+2r=a,即(r-1)2=1-a, ⑤

由此可知:当a>1时,方程⑤无实根,从而无正根;

.

从而, 当a=0时,方程⑤有正根 r=2;

.

所以, 当a=0时,原方程有解z=±2i; 当0

当a>1时,原方程无纯虚数解.

(25)本小题考查椭圆的性质,距离公式,最大值知识以及分析问题的能力. 解法一:根据题设条件,可取椭圆的参数方程是

其中a>b>0待定,0≤θ<2π.

设椭圆上的点(x,y)到点P的距离为d,则

历年高考数学试题整理 (自我) 试卷版

大值,由题设得

,

因此必有

, 由此可得 b=1,a=2. 所求椭圆的参数方程是

河北迁安一中.

解法二:设所求椭圆的直角坐标方程是

其中a>b>0待定.

,

设椭圆上的点(x,y)到点P的距离为d,则

历年高考数学试题整理 (自我) 试卷版

其中

-byb.

由此得

,

由此可得 b=1,a=2.

所求椭圆的直角坐标方程是

河北迁安一中

(26)本题考查对数函数,指数函数,数学归纳法,不等式的知识以及综合运用有关知识解决问题的能力.

(Ⅰ)解:f(x)当x∈(-∞,1]时有意义的条件是 1+2x+?(n-1)x+nxa>0 x∈(-∞,1],n≥2,

上都是增函数,

在(-∞,1]上也是增函数,从而它在x=1时取得最大值

也就是a的取值范围为

(Ⅱ)证法一:2f(x)

[1+2x+?+(n-1)x+nxa]2

现用数学归纳法证明②式.

(A)先证明当n=2时②式成立. 假如0

历年高考数学试题整理 (自我) 试卷版

(1+2xa)2=1+222xa+22xa2≤2(1+22x)<2(1+22xa). 假如a=1,x≠0,因为1≠2x,所以

因而当n=2时②式成立.

(B)假如当n=k(k≥2)时②式成立,即有

[1+2x+?+(k-1)x+kxa]2

=(1+2x+?+kx)2+2(1+2x+?+kx)(k+1)xa+(k+1)2xa2

+k2x)+{[1+(k+1)2xa2]+[22x+(k+1)2xa2]+?

+[k2x+(k+1)2xa2]}+(k+1)2xa2]

其中等号当且仅当a1=a2=?=an时成立.

利用上面结果知,当a=1,x≠0时,因1≠2x,所以有 [1+2x+?+(n-1)x+nx]2≤n[1+22x+?+(n-1)2x+n2xa2]

=(k+1)[1+22x+?+k2x+(k+1)2xa2] ≤(k+1)[1+22x+?+k2x+(k+1)2xa], 这就是说,当n=k+1时②式也成立.

根据(A),(B)可知,②式对任何n≥2(n∈N)都成立.即有 2f(x)

因为

河北迁安一中

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库1989-1994年高考数学试题全国卷(4)在线全文阅读。

1989-1994年高考数学试题全国卷(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/528351.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: