77范文网 - 专业文章范例文档资料分享平台

1989-1994年高考数学试题全国卷(3)

来源:网络收集 时间:2019-03-16 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

历年高考数学试题整理 (自我) 试卷版

(18)已知{an}是公差不为零的等差数列,如果Sn是{an}的前n项的和,那

(19)函数y=sinxcosx+sinx+cosx的最大值是 .

(20)如图,三棱柱ABC-A1B1C1中,若E、F分别为AB、AC

的中点,平面EB1C1F将三棱柱分成体积为V1、V2的两部分,那么V1:V2= .

三、解答题.7

(21)有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.

河北迁安一中

(23)如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.

(24)设a≥0,在复数集C中解方程z2+2│z│=a.

历年高考数学试题整理 (自我) 试卷版

n≥2.

(Ⅰ)如果f(x)当x∈(-∞,1]时有意义,求a的取值范围; (Ⅱ)如果a∈(0,1],证明2f(x)

河北迁安一中

历年高考数学试题整理 (自我) 试卷版

1990年试题(理工农医类)答案

一、选择题:本题考查基本知识和基本运算.

(1)A (2)B (3)D (4)C (5)C (6)B (7)A (8)D

(9)B

(10)D (11)C (12)B (13)B (14)C (15)D 二、填空题:本题考查基本知识和基本运算.

三、解答题.

(21)本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力.

解法一:

由②式得 d=12-2a.

整理得 a2-13a+36=0

解得 a1=4,a2=9. 代入③式得 d1=4,d2=-6.

从而得所求四个数为0,4,8,16或15,9,3,1.

河北迁安一中解法二:设四个数依次为x,y,12-y,16-x ①

由①式得 x=3y-12. ③

将③式代入②式得 y(16-3y+12)=(12-y)2, 整理得 y2-13y+36=0. 解得 y1=4,y2=9. 代入③式得 x1=0,x2=15.

从而得所求四个数为0,4,8,16或15,9,3,1.

(22)本小题考查三角公式以及三角函数式的恒等变形和运算能力.

解法一:由已知得

解法二:如图,不妨设0≤α≤β<2π,且点A的坐标是(cosα,

sinα),点B的坐标是(cosβ,sinβ),则点A,B在单位圆x2+y2=1上.连结

历年高考数学试题整理 (自我) 试卷版

连结OC,于是OC⊥AB,若设点D的坐标是(1,0),再连结OA,OB,则有

解法三:由题设得 4(sinα+sinβ)=3(cosα+cosβ).

将②式代入①式,可得 sin(α-)=sin(-β). 于是 α-=(2k+1)π-(-β)(k∈Z), 或 α-=2kπ+(-β)(k∈Z).

若 α-=(2k+1)π-(-β)(k∈Z),则α=β+(2k+1)π(k∈Z).于是 sinα=-sinβ,即sinα+sinβ=0.

河北迁安一中

由此可知 α-=2kπ+(-β)(k∈Z), 即 α+β=2+2kπ(k∈Z).

所以

(23)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.

解法一:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.

又已知 SC⊥DE,BE∩DE=E, ∴SC⊥面BDE, ∴SC⊥BD.

又 ∵SA⊥底面ABC,BD在底面ABC上, ∴SA⊥BD.

而SC∩SA=S,∴BD⊥面SAC.

∵DE=面SAC∩面BDE,DC=面SAC∩面BDC, ∴BD⊥DE,BD⊥DC.

∴∠EDC是所求的二面角的平面角. ∵SA⊥底面ABC,∴SA⊥AB,SA⊥AC. 设SA=a,

历年高考数学试题整理 (自我) 试卷版

又因为AB⊥BC,

∴∠ACS=30°.

又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.

解法二:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.

又已知SC⊥DE,BE∩DE=E∴SC⊥面BDE, ∴SC⊥BD.

由于SA⊥底面ABC,且A是垂足,所以AC是SC在平面ABC上的射影.由三垂线定理的逆定理得BD⊥AC;又因E∈SC,AC是SC在平面ABC上的射影,所以E在平面ABC上的射影在AC上,由于D∈AC,所以DE在平面 ABC上的射影也在AC上,根据三垂线定理又得BD⊥DE. ∵DE面BDE,DC面BDC,

∴∠EDC是所求的二面角的平面角. 以下同解法一.

(24)本小题考查复数与解方程等基本知识以及综合分析能力. 解法一:设z=x+yi,代入原方程得

河北迁安一中

于是原方程等价于方程组

由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.

情形1.若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a. ③

(Ⅰ)令x>0,方程③变为x2+2x=a. ④

.

由此可知:当a=0时,方程④无正根;

(Ⅱ)令x<0,方程③变为x2-2x=a. ⑤

.

由此可知:当a=0时,方程⑤无负根; 当a>0时,方程⑤有负根

x=1-.

(Ⅲ)令x=0,方程③变为0=a.

由此可知:当a=0时,方程⑥有零解x=0; 当a>0时,方程⑥无零解. 所以,原方程的实数解是: 当a=0时,z=0;

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库1989-1994年高考数学试题全国卷(3)在线全文阅读。

1989-1994年高考数学试题全国卷(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/528351.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: