1.用定义或导数证明单调性均可. x11则a?h(x)在(1,??)上恒成 (2)a??2x在(1,??)上恒成立.设h(x)?2x?xx11. (1)当x?(0,??)时,f(x)?a?立.
可证h(x)在(1,??)单调增。故a?h(1)即a?3,?a的取值范围为(??,3] (3)?f(x)的定义域为{x|x?0,x?R}?mn?0
当n?m?0时,由(1)知f(x)在(0,??)上单调增 ?m?f(m),n?f(n)
2故x?ax?1?0有两个不相等的正根m,n,???a?0???0?a?2
当m?n?0时,可证f(x)在(??,0)上是减函数.
?m?f(n),n?f(m)为
而m?n,故mn?1此时a?0 综上所述,a的取值范围
12. (1)令x?y?0,有f(0)?0,令x1?x,x2??x
有f(?x)?f(x)?f(x?x)?f(0)?0, 即f(?x)??f(x),故f(x)为奇函数 在R上任取x1?x2,则x1?x2?0,由题意知f(x1?x2)?0 则f(x1?x2)?f(x1)?f(?x2)?f(x1)?f(x2)?0 故f(x)是增函数 (2)要使f[sin2??(2?m)(sin??cos?)?4]?f(3?2m)?0,只须
sin??cos?4]??f(3?2m)?f(?3?2m)
sin??cos?4 又由f(x)为单调增函数有sin2??(2?m)(sin??cos?)???3?2m
sin??cos?f[sin2??(2?m)(sin??cos?)?令t?sin??cos?,则sin2??t?1,???[0,原命题等价于t2?1?(m?2)t?
2?2],?t?2sin(???4)?[1,2]
4?3?2m?0对t?[1,2]恒成立 t16
2t(2?t)?(2?t)42t?(2?t)m?2t?t2??2,即m??t? t2?tt2令g(t)?t?,g(t)在[1,2]上为减函数,?m?3时,原命题成立.
t13. (1)由条件知 f(2)?4a?2b?c?2恒成立
又∵取x=2时,f(2)?4a?2b?c?∴f(2)?2.
1(2?2)2?2与恒成立, 8(2)∵??4a?2b?c?21 ∴4a?c?2b?1, ∴b?,2?4a?2b?c?0c?1?4a.
又 f(x)?x恒成立,即ax2?(b?1)x?c?0恒成立. ∴a?0,??(?1)?4a(1?4a)?0,
122111,b?,c?, 8221211∴f(x)?x?x?.
822解出:a?(3)由分析条件知道,只要f(x)图象(在y轴右侧)总在直线 y?可,也就是直线的斜率
m1x?上方即24m小于直线与抛物线相切时的斜率位置,于是: 2?y?????y???1211x?x?822
m1x?24∴m?(??,1?解法2:g(x)?22). 2121m11x?(?)x??在x?[0,??)必须恒成立, 82224即 x?4(1?m)x?2?0在x?[0,??)恒成立.
17
①△<0,即 [4(1-m)]-8<0,解得:1?2
22 ; ?m?1?22???02?②??2(1?m)?0 解出:m?1?.
2?f(0)?2?0?总之,m?(??,1?14.
2). 2x?2?x?3?1??0 2x?12x?11?(x?3)(2x?1)?0 ??3?x??
2|x?a|?2??2?a?x?2?a
?A?B??,?2?a??3或?2?a??实数a的取值范围是:
1 215. (1)g(x)?f(x)?x?ax2?(b?1)x?1,且a>0.因为x1?1?x2,所以
(x1?1)(x2?1)?0,即x1x2?x1?x2?1,于是x?m???b1b?11?(??) 2a2aa11111(x1?x2)?x1x2?(x1?x2)?[(x1?x2)?1]?. (2)由方程g(x)?ax2 222221?(b?1)x?1?0,可知x1x2??0,所以x1、x2同号.由0?x1?2,则x2?x1?2,
a(b?1)24??4,所以x2?2?x1?0,所以g(2)?0,即4a+2b-1<0,又(x2?x1)?2aa2所以2a?1?2(b?1)2?1,(因为a>0)代入①式得:2(b?1)?1?3?2b,解之得
b?11?b1. (3)由条件得x1?x2?,x1x2?,不妨设???,则4aa0?2(??x1)(??x2)?2???2(?x1??x2)?2x1x2?2???2(x1?x2)(???)?2x1x2?(x1?x2)(???)?2???2(x1?x2)(???)?2x1x2?2a???(1?b)(???)?2,故
2a???(1?b)(???)?2?0.
18
16. (Ⅰ)?f(x)?0的两实根为x1,x2??1?16?4ab?0 (1)
4bx1?x2??,x1?x2?又令g(x)aa?f(x)?x?ax2?3x?t
b a
则g(x)?0的两实根为?,???2?9?4ab?0 (2)?????3,???2|a??|?(???)2?4???9?4ab?1
|a|?9?4ab?a2即a(a?4b)?9?a,b均为负整数,?a为负奇数,从而a??1,b??2
满足(1),(2),故f(x)??x2?4x?2
31?23?即??3 2a2ag(1)?0a?3?b?0① 且 即
② g(2)?04a?b?6?0
(Ⅱ)(理)?a?0且??1???2?? 由①得
b3??1??2即x1?x2?2 aa
(Ⅱ)(文)?f(1)?0?a?4?b?0即b??a?4
又由(Ⅰ)得9?4ab?0?9?4a(?a?4)?0 即 4a2?16a?9?0?a??2?7或a??2?7
22 又?a为负整数?a??4,?5,?5,?? 不妨令x1?1,由x1?x2??4,得x2??1?4
aa
?x1?x2?2?
17.
44,1?|x1?x2|?2 ,??〔-1,0〕
aa?x?3?a?x?1??x?2??x?3?x?311a?2??10x?x?2x?3??7210?7x?37?210?0?a?919
(x?1)(x?2)2?x?1?18. (I)f(x)?[]???(x?1且x?2)
?x?1?(x?1)(x?2) ?0?2x?1x?11?1且? x?1x?132?x2?3x?2?11 ?函数f(x)??2?的值域为[0,)?(,1)
99?x?x?2??x?1? 由f(x)???,得f?x?1?2?1(x)?1?x
1?x(x)?1?x1?x11x?[0,)?(,1)
99 因此,函数y?f(x)的反函数f?1 (II)g(x)?1?x2?x?3??(1?x)?1?22?1
1?x1?x 当且仅当
2?1?x
1?x
即x?3?22时,g(x)有最小值22?1 (III)由(1? 得1?x)?f?1(x)?m(m?x)
x?m2?mx
设x?t,则?(t)?(1?m)(t?1?m)
根据题意,对区间[,122]中的一切t值,?(t)?0恒成立 23?1??()?0(m?1)(m?)?0??2?2? 则?得?
??(2)?0?(m?1)[m?(1?2)]?0??2?2? 20
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库最全12M高考数学压轴题突破训练(上)(4)在线全文阅读。
相关推荐: