高三数学第二轮复习教案
第9讲 应用问题的题型与方法
(4课时)
一、 考试内容
《2004年普通高等学校招生全国统一考试数学科说明(理科、新课程版)》中指出:数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,测试中学数学基础知识、基本技能、基本思想和方法,考查思维能力、运算能力、空间想象能力、解决实际问.....题的能力. ....
二、考试要求
“考试说明”对于“解决实际问题的能力”的界定是:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括提炼、解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述.并且指出:对数学应用问题,........要把握好提出问题所涉及的数学知识和方法的深度和广度,切合中学数学教学实际. ....................................
应用问题的“考试要求”是考查考生的应用意识和运用数学知识与方法来分析问题解决问题的能力,这个要求分解为三个要点:
1、要求考生关心国家大事,了解信息社会,讲究联系实际,重视数学在生产、生活及科学中的应用,明确“数学有用,要用数学”,并积累处理实际问题的经验.
2、考查理解语言的能力,要求考生能够从普通语言中捕捉信息,将普通语言转化为数学语言,以数学语言为工具进行数学思维与交流.
3、考查建立数学模型的初步能力,并能运用“考试说明”所规定的数学知识和方法来求解.
三、复习目标
数学应用性问题是历年高考命题的主要题型之一, 也是考生失分较多的一种题型. 高考中一般命制一道解答题和两道选择填空题.解答这类问题的要害是深刻理解题意,学会文字语言向数学的符号语言的翻译转化,这就需要建立恰当的数学模型,这当中,函数,数列,不等式,排列组合是较为常见的模型,而三角,立几,解几等模型也应在复课时引起重视.
由于数学问题的广泛性,实际问题的复杂性,干扰因素的多元性,更由于实际问题的专一性,这些都给学生能读懂题目提供的条件和要求,在陌生的情景中找出本质的内容,转化为函数、方程、不等式、数列、排列、组合、概率、曲线、解三角形等问题.
四、双基透视
1
高考应用性问题的热门话题是增减比率型和方案优化型, 另外,估测计算型和信息迁移型也时有出现.当然,数学高考应用性问题关注当前国内外的政治,经济,文化, 紧扣时代的主旋律,凸显了学科综合的特色.求解应用题的一般步骤是(四步法):
1、读题:读懂和深刻理解,译为数学语言,找出主要关系;
2、建模:把主要关系近似化、形式化,抽象成数学问题;
3、求解:化归为常规问题,选择合适的数学方法求解;
4、评价:对结果进行验证或评估,对错误加以调节,最后将结果应用于现实,作出解释或验证.
在近几年高考中,经常涉及的数学模型,有以下一些类型:数列模型、函数模型、不等式模型、三角模型、排列组合模型等等.
Ⅰ.函数模型 函数是中学数学中最重要的一部分内容,现实世界中普遍存在着的最优化问题,常常可归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数知识和方法去解决.
⑴ 根据题意,熟练地建立函数模型;
⑵ 运用函数性质、不等式等知识处理所得的函数模型.
Ⅱ.几何模型 诸如航行、建桥、测量、人造卫星等涉及一定图形属性的应用问题,常常需要应用几何图形的性质,或用方程、不等式或用三角函数知识来求解.
Ⅲ.数列模型 在经济活动中,诸如增长率、降低率、存款复利、分期付款等与年(月)份有关的实际问题,大多可归结为数列问题,即通过建立相应的数列模型来解决.在解应用题时,是否是数列问题一是看自变量是否与正整数有关;二是看是否符合一定的规律,可先从特殊的情形入手,再寻找一般的规律.
中学数学各个章节中有关应用问题的内容分别是:
1.函数:能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 2.不等式:掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.
3.平面向量:在立体几何与解析几何中的应用.
4.三角函数:理解函数y=Asin(ωx+ψ)中 A、ω、ψ的物理意义;掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.
5.数列:能运用公式解决简单的问题.
6.直线和圆的方程:了解线性规划的意义,并会简单的应用. 7.圆锥曲线方程:了解圆锥曲线的初步应用.
8.直线、平面、简单几何体:平面及其基本性质,平面图形直观图的画法.平行直线,
2
对应边分别平行的角,异面直线所成的角,异面直线的公垂线,异面直线的距离.直线和平面平行的判定与性质,直线和平面垂直的判定与性质,点到平面的距离,斜线在平面上的射影,直线和平面所成的角,三垂线定理及其逆定理.平行平面的判定与性质,平行平面间的距离,二面角及其平面角,两个平面垂直的判定与性质.多面体、棱柱、棱锥、正多面体、球等各部分都有应用.
9.排列、组合、二项式定理:
⑴掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题; ⑵理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的问题.
⑶理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.
⑷掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.
这部分主要解决⑴不同类问题(可重复排列问题,不可重复排列问题,组合问题)的辩析;⑵多类多步排列组合问题的解决方法,主要是两个特元以上的特元法或特位法、排除法的应用.
10.概率:
⑴了解随机事件的发生存在着规律性和随机事件概率的意义;
⑵了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率;
⑶了解互斥事件相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率;
⑷会计算事件在n次独立重复试验中恰好发生k次的概率. 11.概率与统计:
⑴了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列;
⑵了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差;
⑶会用抽机抽样,系统抽样,分层抽样等常用的抽样方法从总体中抽取样本; ⑷会用样本频率分布去估计总体分布; ⑸了解正态分布的意义及主要性质; ⑹了解假设检验的基本思想;
⑺会根据样本的特征数估计总体; ⑻了解线性回归的方法.
12.极限、导数、复数:了解导数概念的某些实际背影(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义;
五、注意事项
对应用题,要求能阅读、理解陈述的材料,能结合应用所学数学知识、思想方法解决问题,包括解决带有实际意义的或者相关学科、生产、生活中的数学问题.并能用数学语言正确的加以表述.考生的弱点主要表现在将实际问题转化成数学问题的能力上.实际问题转化为数学问题,关键是提高阅读能力即数学审题能力,审出函数、方程、不等式、等式,要求我们读懂材料,辨析文字叙述所反应的实际背景,领悟从背景中概括出来的数学实质,抽象其中的数量关系,将文字语言叙述转译成数学式符号语言,建立对应的数学模型解答.
3
可以说,解答一个应用题重点要过三关:一是事理关,即读懂题意,需要一定的阅读理解能力;二是文理关,即把文字语言转化为数学的符号语言;三是数理关,即构建相应的数学模型,构建之后还需要扎实的基础知识和较强的数理能力.
在解答应用问题中,最常见的是以上的几种模型,即:函数模型、不等式模型、数列模型、三角模型.此外,其它的几种应用问题模型有:与排列组合有关的应用问题,特征比较明显,属于排列组合模型,解答时一定要分清楚是分类还是分步,是排列还是组合,是否有重复和遗漏;与光学、力学、轨迹等有关方面的应用问题,可通过建立适当的坐标系,运用曲线的知识来建立数学模型来解答,且曲线研究主要是二次曲线,所以可称之为二次曲线模型.
六、范例分析
例1.(1996年全国高考题)某地现有耕地10000公顷,规划10年后粮食单产比现有增加22%,人均粮食产量比现在提高10%,如果人口年增长率为1%,那么耕地每年至多只能减少多少公顷(精确到1公顷)?
(粮食单产=
总产量耕地面积 ; 人均粮食产量=
总产量总人口数)
分析:此题以关系国计民生的耕地、人口、粮食为背景,给出两组数据,要求考生从两条线索抽象数列模型,然后进行比较与决策.
解:1.读题:问题涉及耕地面积、粮食单产、人均粮食占有量、总人口数及三个百分率,其中人均粮食占有量P=
粮食单产×耕地面积总人口数, 主要关系是:P实际≥P规划 .
2.建模:设耕地面积平均每年至多减少x公顷,现在粮食单产为a吨/公顷,现在人口数为m,则现在占有量为
a×10m4,10年后粮食单产为a(1+0.22),人口数为m(1+0.01)10,
耕地面积为(104-10x).
a(1?0.22)(10?10x)m(1?0.01)104∴ ≥
a×10m4(1+0.1)
即 1.22(104-10x)≥1.1×104×(1+0.01)10 3.求解: x≤10-
10311.1.22×103×(1+0.01)10
12∵ (1+0.01)=1+C10×0.01+C10×0.01+C10×0.01+?≈1.1046
4
233∴ x≤103-995.9≈4(公顷)
4.评价:答案x≤4公顷符合控制耕地减少的国情,又验算无误,故可作答.(答略) 另解:1.读题:粮食总产量=单产×耕地面积; 粮食总占有量=人均占有量×总人口数;
而主要关系是:粮食总产量≥粮食总占有量
2.建模:设耕地面积平均每年至多减少x公顷,现在粮食单产为a吨/公顷,现在人口数为m,则现在占有量为
a×10m4,10年后粮食单产为a(1+0.22),人口数为m(1+0.01)10,
耕地面积为(104-10x).
a×10m4∴ a(1+0.22)×(1O-10x)≥
11.1.224×(1+0.1)×m(1+0.01)10
3.求解: x≤103-×103×(1+0.01)10
23∵ (1+0.01)10=1+C1×0.01+C10×0.012+C10×0.013+?≈1.1046 10∴ x≤103-995.9≈4(公顷)
4.评价:答案x≤4公顷符合控制耕地减少的国情,又验算无误,故可作答.(答略) 说明:本题主要是抓住各量之间的关系,注重3个百分率.其中耕地面积为等差数列,总人口数为等比数列模型,问题用不等式模型求解.本题两种解法,虽都是建立不等式模型,但建立时所用的意义不同,这要求灵活掌握,还要求对指数函数、不等式、增长率、二项式定理应用于近似计算等知识熟练.此种解法可以解决有关统筹安排、最佳决策、最优化等问题.此种题型属于不等式模型,也可以把它作为数列模型,相比之下,主要求解过程是建立不等式模型后解出不等式.
在解答应用问题时,我们强调“评价”这一步不可少!它是解题者的自我调节,比如本题求解过程中若令1.0110≈1,算得结果为x≤98公顷,自然会问:耕地减少这么多,符合国家保持耕地的政策吗?于是进行调控,检查发现是错在1.0110的近似计算上.
A 例2.某校有教职员工150人,为了丰富教工的课余生活,每天
定时开放健身房和娱乐室.据调查统计,每次去健身房的人有 M C D B 10%下次去娱乐室,而在娱乐室的人有20%下次去健身房.请问,
5
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库第9讲应用问题的题型与方法(4课时)在线全文阅读。
相关推荐: