9.一个各位数字互不相同的四位数能被9整除,把它的个位数字去掉后剩下一个三位数,这个三位数能被4整除,这个四位数最大是多少?
10.(1)一个多位数(两位及两位以上),它的各位数字互不相同,并且含有数字0.如果它能被11整除,那么这个多位数最小是多少?
(2)一个多位数,它的各位数字之和为13,如果它能被11整除,那么这个多位数最小是多少?
拓展篇
1.判断下面11个数的整除性:
23487,3568,8875,6765,5880,7538,198954,6512,93625,864,407.
(1)这些数中,有哪些数能被4整除?哪些数能被8整除? (2)哪些数能被25整除?哪些数能被125整除? (3)哪些数能被3整除?哪些数能被9整除? (4)哪些数能被11整除?
2. 173□ 是一个四位数.数学老师说:―我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9、11、8整除,‖问:数学老师在方框中先后填入的3个数字之和是多少?
3. 五位数3□ 07□ 能同时被11和25整除,这个五位数是多少?
4.牛叔叔给45名工人发完工资后,将总钱数记在一张纸上,但是记账的那张纸被香烟烧了两个洞,上面只剩下―67□ 8□ ‖,其中方框表示被烧出的洞.牛叔叔记得每名工人的工资都一样,并且都是整数元,请问:这45名工人的总工资有可能是多少元呢?
2008□ 能同时被9和11整除.这个六位数是多少? 5.六位数□
6.请从1、2、3、4、5、6、7这7个数字中选出5个组成一个五位数,使它是99的倍数.这个五位数最大是多少?
7.小悦写了一个两位数59,冬冬写了一个两位数89,他们让阿奇写一个一位数放在59与89之间拼成一个五位数59□ 89 ,使得这个五位数能被7整除,请问:阿奇写的数是多少?
?5□ 99?9能被13整除,中间方格内的数字是多少? 8. 已知55??????25个525个9
9.用数字6、7、8各两个,要组成能同时被6、7、8整除的六位数.请写出一个满足要求的六位数.
10. 冬冬和阿奇玩一个数字游戏,冬冬先将一个三位数的百位与个位填好,然后阿奇来填写这个三位数的十位,如果最后这个三位数能被11整除,那么阿奇获胜,否则冬冬获胜.冬冬想了一会,想到了一个必胜的办法,请问:冬冬想到的办法是什么?
11.对于一个自然数N,如果具有以下的性质就称为―破坏数‖:把它添加到任何一个自然数的右端,形成的新数都不能被N+1整除.请问:一共有多少个不大于10的破坏数?
12. 一个五位数,它的末三位为999.如果这个数能被23整除,那么这个五位数最小是多少?
超越篇
1.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?
2.将自然数1,2,3,?,依次写下去形成一个多位数―123456789101112?‖.当写到某个数N时,所形成的多位数恰好第一次能被90整除.请问:N是多少?
3.小悦的爸爸买回来两箱杯子.两个箱子上各贴有一张价签,分别写着―总价117.口△元‖、―总价127.○◇元‖(口、△、○、◇四个数字已辨认不清,但是它们互不相同).爸爸告诉小悦,其中一箱装了99只A型杯子,另一箱装了75只B型杯子,每只杯子的价格都是整数分.
但是爸爸记不清每个价签具体是多少钱,也不记得哪个箱子装的是A型杯子,哪个箱子装的是B型杯子了,爸爸知道小悦的数学水平很厉害,于是他想考考小悦,
小悦看了看,说:“这呵难不倒我,我刚好学了一些复杂的整除性质,这下可以派上用场了.” 同学们,你能像小悦一样把价签上的数分辨出来吗?
4.冬冬在一张纸条上依次写下2、3、4、5、6、7这6个数字,形成一个六位数.阿奇把这张纸条撕成了三节.这三节纸条上的数加起来得到的和(如图2-1,三节纸条上的和为23 + 456 +7 = 486)能被55整除.请问:阿奇可能是在什么位置撕断的这张纸条?
5.将一个自然数N接在任一自然数的右面(例如将2接在13的右面得到132),如果所得的新数都能被N整除,那么称N为―神奇数‖.请求出所有的两位―神奇数‖.
□ □ 11 中的两个方框内各填入一个数字,使此数能被17和19整除.方框中的两位6.在六位数11数是多少?
7.多位数A由数字l、3、5、7、9组成,每个数字都可以重复出现但至少出现一次,而且A可以被A中任意一个数字整除,求这样的A的最小值. 8.有一些自然数,从左向右读与从右向左读是完全一样的,我们将这样的数称作―回文数‖.比如2332、181、77都是回文数.如果一个六位回文数除以95的商也是回文数,那么这个六位数是多少?
第3讲 质数与合数
内容概述
掌握质数与合数的概念;熟悉常用酌质数,并掌握质数酌判定方法;能够利用分锯质固数酌方法锯决相关酌整教问题;学会计算乘积末尾零酌个数.
典型问题
兴趣篇
1.(1)如果两个质数相加等于16,这两个质数有可能等于多少? (2)如果两个质数相加等于25,这两个质数有可能等于多少? (3)如果两个质数相加等于29,这样的两个质数存在吗?
2.有人说:―任何7个连续整数中一定有质数.‖请你举一个例子,说明这句话是错的.
3.请写出5个质数,使得它们正好构成一个公差为12的等差数列.
4.请把下面的数分解质因数:(1) 160;(2) 598;(3) 211.
5.三个自然数的乘积为84,其中两个数的和正好等于第三个数,请求出这三个数.
6.用一个两位数除330,结果正好能整除,请写出所有可能的两位数.
7.三个连续自然数的乘积等于39270.这三个连续自然数的和等于多少?
8.请将2、5、14、24、27、55、56、99这8个数分成两组,使得这两组数的乘积相等.
9.请问:算式l x2 x3×…×15的计算结果的末尾有几个连续的0?
10.请问:连续两个两位数乘积的末尾最多有几个连续的0?
拓展篇
1.一个两位质数的两个数字交换位置后,仍然是一个质数,请写出所有这样的质数.
2.9个连续的自然数中,最多有多少个质数?
3.(1)两个质数的和是39,这两个质数的差是多少?
(2)三个互不相同的质数相加,和为40,这三个质数分别是多少?
4.一请把下面的数分解质因数:(1) 360; (2) 539; (3) 373; (4) 12660.
5.有一些最简真分数,它们的分子与分母的乘积都等于140.把所有这样的分数从小到大排列,其中第三个分数是多少?
6.冬冬在做一道计算两位数乘以两位数的乘法题时,把一个乘数中的数字5看成了8,由此得乘积为1104.正确的乘积是多少?
7.甲、乙、丙三人打靶,每人打三枪.三人各自中靶的环数之积都是60,且环数是不超过10的自然数.把三个人按个人总环数由高到低排列,依次是甲、乙、丙.请问:靶子上4环的那一枪是谁打的?
8.975×935×972×□,要使这个连乘积的最后4个数字都是0,方框内最小应填什么数?
9.(1)算式1×2×3×?×29×30的计算结果的末尾有几个连续的0? (2)算式31×32×33×?×150的计算结果的末尾有几个连续的0?
10.把从l开始的若干个连续的自然数1,2,3,?,乘到一起.已知这个乘积的末尾13位恰好都是0.请问:在相乘时最后出现的自然数最小应该是多少?
11.168乘以一个大于0的整数后正好是一个平方数.乘的这个整数至少是多少?所得乘积又是多少的平方?
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库数学思维训练导引五年级 - 图文(2)在线全文阅读。
相关推荐: