77范文网 - 专业文章范例文档资料分享平台

广州市第一中学2010届高三数学第二轮复习专题 - 不等式

来源:网络收集 时间:2019-02-17 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

www.mathfans.net 中学数学免费网 www.mathfans.net

广州市第一中学高三数学第二轮复习专题——不等式

一、本章知识结构:

实数的性质

不等式的性质 均值不等式

比较法 综合法 分析法 其它方法 一元一次不等式 一元二次不等式 分式高次不等式 含绝对值不等式 函数性质的讨论 最值的计算与讨论 实际应用问题 不等式的证明 不等式的解法 不等式的应用 二、高考要求

(1)理解不等式的性质及其证明。

(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。

(3)分析法、综合法、比较法证明简单的不等式。 (4)掌握某些简单不等式的解法。 (5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。

三、热点分析

1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注.

2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点.

3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、

本站部分信息资源来源于网络,仅供学习究探讨收藏之用,版权归原作者所有!

www.mathfans.net 中学数学免费网 www.mathfans.net

功能之多、能力要求之高,一直是高考的热点.

4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识.

不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。高考试题中有以下几个明显的特点:

(1)不等式与函数、数列、几何、导数,实际应用等有关内容综合在一起的综合试题多,单独考查不等式的试题题量很少。

(2)选择题,填空题和解答题三种题型中均有各种类型不等式题,特别是应用题和压轴题几乎都与不等式有关。

(3)不等式的证明考得比得频繁,所涉及的方法主要是比较法、综合法和分析法,而放缩法作为一种辅助方法不容忽视。 四、复习建议

1.力求熟练掌握不等式的性质,以最大限度地减少不等式解题中可能出现的失误。 2.对于不等式的证明,应略高于教材上有关例题和习题的难度。必须重视演练与其它内容综合在一起的证明题,特别是综合教材上的例题与习题、创新题。

3.对于解不等式,一般不需超出教材上的例题和习题的难度,也不要超出教材上的例题和习题所涉及的范围,但对于需要分类求解的不等式应给予充分的注意,而这类习题的分类一般不超过两层。

4.熟练掌握利用平均值不等式求最值的方法及其使用条件,并重视在几何和实际问题中的应用。

5,通过训练,使学生掌握等价转化思想和化归思想,培养学生的代数推理能力,提高学生应用不等式知识解决问题的能力.

6.重视数学思想方法的复习根据本章上述的命题趋向我们迎考复习时应加强数学思想方法的复习.在复习不等式的解法时,加强等价转化思想的训练与复习.解不等式的过程是一个等价转化的过程,通过等价转化可简化不等式(组),以快速、准确求解.加强分类讨论思想的复习.在解不等式或证不等式的过程中,如含参数等问题,一般要对参数进行分类讨论.复习时,学生要学会分析引起分类讨论的原因,合理的分类,做到不重不漏.加强函数与方程思想在不等式中的应用训练.不等式、函数、方程三者密不可分,相互联系、互相转化.如求参数的取值范围问题,函数与方程思想是解决这类问题的重要方法.在不等式的证明中,加强化归思想的复习,证不等式的过程是一个把已知条件向要证结论的一个转化过程,既可考查学生的基础知识,又可考查学生分析问题和解决问题的能力,正因为证不等式是高考考查学生代数推理能力的重要素材,复习时应引起我们的足够重视.利用函数f(x)=x+ (a>0)的单调性解决有关最值问题是近几年高考中的热点,应加强这方面的训练和指导.

7.强化不等式的应用高考中除单独考查不等式的试题外,常在一些函数、数列、立体几何、解析几何和实际应用问题的试题中涉及不等式的知识,加强不等式应用能力,是提高解综合题能力的关键.因此,在复习时应加强这方面训练,提高应用意识,总结不等式的应用规律,才能提高解决问题的能力. 如在实际问题应用中,主要有构造不等式求解或构造函数求函数的最值等方法,求最值时要注意等号成立的条件,避免不必要的错误.

五、典型例题

不等式的解法

本站部分信息资源来源于网络,仅供学习究探讨收藏之用,版权归原作者所有!

www.mathfans.net 中学数学免费网 www.mathfans.net

【例1】 解不等式:

a?1?a x?2(a?1)x?(2?a)>0,

x?2解:原不等式可化为:

即[(a-1)x+(2-a)](x-2)>0. 当a>1时,原不等式与(x-

a?2

)(x-2)>0同解. a?1

a?2a?2

≥2,即0≤a<1时,原不等式无解;若<2,即a<0或a>1,a?1a?1

a?2)∪(2,+∞). a?1于是a>1时原不等式的解为(-∞,

当a<1时,若a<0,解集为(

a?2a?2,2);若0<a<1,解集为(2,) a?1a?1综上所述:

当a>1时解集为(-∞,

a?2)∪(2,+∞); a?1a?2); a?1当0<a<1时,解集为(2,

当a=0时,解集为?; 当a<0时,解集为(

a?2,2). a?1

【例2】 设不等式x-2ax+a+2≤0的解集为M,如果M?[1,4],求实

2

数a的取值 范围.

本站部分信息资源来源于网络,仅供学习究探讨收藏之用,版权归原作者所有!

www.mathfans.net 中学数学免费网 www.mathfans.net

解:M?[1,4]有n种情况:其一是M=?,此时Δ<0;其二是M≠?,此时Δ>0,分三种情况计算a的取值范围.

设f(x)=x2 -2ax+a+2,有Δ=(-2a)2-(4a+2)=4(a2-a-2) (1)当Δ<0时,-1<a<2,M=?[1,4]

(2)当Δ=0时,a=-1或2.当a=-1时M={-1}?[1,4];当a=2时,m={2}[1,4].

(3)当Δ>0时,a<-1或a>2.设方程f(x)=0的两根x1,x2,且x1<x2,那么M=[x1,x2],M?[1,4]?1≤x1<x2≤4???f(1)?0,且f(4)?0

1?a?4,且??0???a?3?0

?18?7a?0

18即?,解得:2<a<, ?

7?a?0

??a??1或a?2

∴M?[1,4]时,a的取值范围是(-1,

18). 7

【例3】 解关于x的不等式:log2?x?1??log4[a?x?2??1]?a?0?.

?x?1?x?1?0??1?解:原不等式等价于?a?x?2??1?0 ①,即?x?2?.

a??2??x?1??a?x?2??1???x?a??x?2??01?1?x?2?由于a?1,所以1?2?,所以,上述不等式等价于? ② aa???x?a??x?2??0解答这个含参数的不等式组,必然需要分类讨论,此时,分类的标准的确定就成了解答的关键.如何确定这一标准?

1??x?2?(1)当1?a?2时,不等式组②等价于? a?x?2或x?a?本站部分信息资源来源于网络,仅供学习究探讨收藏之用,版权归原作者所有!

www.mathfans.net 中学数学免费网 www.mathfans.net

1???a?1?21??0,所以 2??a. 此时,由于?2???a?a?aa?从而 2?1?x?a或x?2. a3??x?(2)当a?2时,不等式组②等价于?2

??x?23所以 x?,且x?2.

21??x?2?(3)当a?2时,不等式组②等价于? a?x?2或x?a?此时,由于2?综上可知:

11?2,所以,2??x?2或x?a. aa当1?a?2时,原不等式的解集为?x2???32??1?x?a或x?2?; a??当a?2时,原不等式的解集为?xx?,且x?2?;

????1当a?2时,原不等式的解集为?x2??x?2或x?a?.

a??【例4】 解关于x的不等式:4?logax?logax?2?a?0,a?1? 解:原不等式等价于

?4?logax?0???2?logax?4?2?logax?4?? logx?2?0?2??alogx?3或logx?0?a??logax?3logax?0?a2??4?logx?logx?2aa??3?logax?4,∴当a?1时,原不等式的解集为xa3?x?a4

??当0?a?1时,原不等式的解集为xa4?x?a3

【例5】 设函数f?x??ax?x2?1, (1)当a?2时,解不等式f(x)?f?1?;

(2)求a的取值范围,使得函数f?x?在?1,???上为单调函数. 讲解:(1)a?2时,f(x)?f?1?可化为:2?x?1??x2?1,等价于:

??x?1?0 ① 或 ?22??4?x?1??x?1??x?1?0 ② ?2?x?1?0???本站部分信息资源来源于网络,仅供学习究探讨收藏之用,版权归原作者所有!

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库广州市第一中学2010届高三数学第二轮复习专题 - 不等式在线全文阅读。

广州市第一中学2010届高三数学第二轮复习专题 - 不等式.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/478806.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: