(4)解方程: x?9x?10?x2?3x?10?0?x?5,x??2 x?69an?10?2an?1?2an?611(an?2)11an?2于是 ???an?1?59an?104(an?5)4an?5?5an?6an?211n?1a1?215?11n?22?4n311n?13?11n所以。所以an? ?n?1????nnn?1n3?11?11?4an?54a1?54411?4
第八讲 递归数列的通项(3)
求下列递推公式确定数列的通项公式:
?a1?1?a1?1 (2)? (1)??an?1?2an?3?an?1?2an?n??a1?1(3)? (4)na?2a?3?n?n?1??a1?3 ?na?a?2?n?n?1解:(1)设an?1?x?2(an?x),则an?1?2an?x?x?3 所以an?3?(a1?3)?2n?1?4?2n?1?2n?1,an?2n?1?3
(2)设an?1?x(n?1)?y?2(an?xn?y),则an?1?2an?xn?x?y 于是x?1,y?x?0?x?y?1,所以an?1?n?2?2(an?n?1) 所以an?n?1?(a1?1?1)?2n?1?3?2n?1,an?3?2n?1?n?1 (3)设an?1?x?3n?1?2(an?x?3n),则an?1?2an?x?3n?x??1 所以an?3n?(a1?3)?2n?1??2?2n?1??2n,an?3n?2n
(4)设an?1?x(n?1)?2n?2(an?xn?2n?1)?an?1?2an?x?2n?x??1 所以an?n?2n?1?(a1?1)?2n?1?2?2n?1?2n,an?(n?2)2n?1
第九讲 高次方程的求根
解下列方程:
(1)6x4?13x3?12x2?13x?6?0
(2)30x4?17x3?228x2?17x?30?0 (3)15x5?34x4?15x3?15x2?34x?15?0 (4)3x4?7x3?7x?3?0 (5)2x4?9x3?9x?2?0
(6)x7?2x6?5x5?13x4?13x3?5x2?2x?1?0 (7)x6?5x4?5x2?1?0
(8)x6?3x5?2x4?6x3?2x2?3x?1?0 (9)x4?3x3?2x2?3x?1?0
解:(1)6x4?13x3?12x2?13x?6?0?6(x2?x?2)?13(x?x?1)?12?0
6(x?x?1)2?13(x?x?1)?0?x?x?1?0,x?x?1?32, 2313?x2?1?0,6x2?13x?6?0 6所以x??i,(2)30x4?17x3?228x2?17x?30?0?30(x2?x?2)?17(x?x?1)?228?0
82130(x?x?1)2?17(x?x?1)?168?0?x?x?1?,x?x?1??
3101253x2?8x?3?0,10x2?21x?10?0,所以x?3,?,,?
352(3)方程可以分解成(x?1)(x4?49x3?64x2?49x?15)?0 对于x4?49x3?64x2?49x?15?0,用x2去除两边:
15(x2?x?2)?49(x?x?1)?64?0?15(x?x?1)2?49(x?x?1)?34?0 [15(x?x?1)?34](x?x?1?1)?015(x?x?1)?34?0,x?x?1?1?0
15x2?34x?15?0,x2?x?1?0?(5x?3)(3x?5)?0,x???3i 2
53?1?3i?1?3i所以方程的根为:1,?,?, ,3522(4)3x4?7x3?7x?3?0?3(x2?x?2)?7(x?x?1)?0
3(x?x?1)2?7(x?x?1)?6?0?[3(x?x?1)?2](x?x?1?3)?0
3x2?2x?3?0,x2?3x?1?0?x?1?42i?3?5, ,x?32(5)2x4?9x3?9x?2?0?2(x2?x?2)?9(x?x?1)?0
?2(x?x?1)2?9(x?x?1)?4?0?[2(x?x?1)?1](x?x?1?4)?0
?2x2?x?2?0,x2?4x?1?0?x?1?17,x?2?2 4(6)原方程可以分解为(x?1)(x6?x5?6x4?7x3?6x2?x?1)?0
对于x6?x5?6x4?7x3?6x2?x?1得:(x3?x?3)?(x2?x?2)?6(x?x?1)?7?0
(x?x?1)(x2?x?2?1)?(x?x?1)2?2?6(x?x?1)?7?0 (x?x?1)[(x?x?1)2?3]?(x?x?1)2?2?6(x?x?1)?7?0
(x?x?1)3?(x?x?1)2?9(x?x?1)?9?0?(x?x?1?1)[(x?x?1)2?9]?0 x?x?1?1?0,x?x?1?3,x?x?1??3 解之得:x?3?5?1?3i?3?5;x?;x?
222?1?3i3?5?3?5;; 222所以原方程的根为: ?1;(7) 方程可以变形成(x2?1)(x4?4x2?1)?0
(3?1)2(6?2)2?对于x?4x?1?0得:x?2?3?x? 244222所以方程的根为:1,?1,6?2,26?2,22?66?2,? 22(8)方程可以分解成(x2?1)(x4?3x3?x2?3x?1)?0
对于x4?3x3?x2?3x?1?0?(x2?x?2)?3(x?x?1)?1?0
(x?x?1)2?3(x?x?1)?1?0?x?x?1??3?5 22x2?(3?5)x?2?0?x??3?5?30?65?3?5?30?65 ,x?44所以方程的根为1,?1,?3?5?30?65?3?5?30?65 ,44(9)方程可以变形成(x2?x?2)?3(x?x?1)?2?0?(x?x?1)2?3(x?x?1)?4?0
?x?x?1?3?7i?2x2?(3?7i)x?2?0 2而(3?7i)2?16?18?67i?3(7?27i?i2)?3(7?i)2?(21?3i)2 所以对于2x2?(3?7i)x?2?0得x?3?7i?(21?3i),
4对于2x2?(3?7i)x?2?0得x?3?7i?(21?3i)
4所以方程的四个根为:3?21?(7?3)i3?21?(7?3)i,,
443?21?(7?3)i3?21?(7?3)i, 44第十讲 根式的化简与代数式值的计算
1、求下列各多项式的值:
(1)x?9?62,f(x)?2x3?20x2?23x?5 2(2)x?2?3?6,f(x)?x4?22x2?48x?2 (3)x?3?23?2,y?3?23?2,f(x,y)?3x2?5xy?3y2
解:(1)x?9?62?2x?9?62?4x2?36x?81?72?4x2?36x?9?0 2
所以f(x)?1137x(4x2?40x?46)?5?x(4x2?36x?9)?2x2??5 22237279?5??2x2?,而x2?9x? 224 ??2x2?927?18x?18?9(9?62)?18?99?542 所以f(x)??2(9x?)?42(2)x?2?3?6?(x?6)2?9?62?x2?3?26(x?3)
?x4?6x2?9?24x2?483x?72?x4?30x2?483x?63 所以f(x)?x4?22x2?48x?2?x4?30x2?8x2?48x?2
?8x2?483x?63?48x?2?8x2?48(3?1)x?65
?8(x2?3)?48(3?1)x?89?166(x?3)?48(3?1)x?89 ?(166?483?48)x?482?89
?1442?163?240?482?89?1922?163?329
(3)由x?3?23?2,y?3?23?2得xy?1,x?5?26,y?5?26,x?y?10,
所以f(x,y)?3x2?5xy?3y2?3(x?y)2?11xy?3?100?11?289 2、化简2?32?2?32?2?2?32?2?2?3 解:原式?2?32?2?34?(2?2?3 ?2?32?2?32?2?3?2?34?(2?3)
?2?32?3?4?3?1
3、化简下列各式
(1)4?12?37?40?5 (2)5?5?33?5?5?3 3解:(1)由于4?12?4?23?3?1,7?40?5?252?2?5?2
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库初等数学专题研究答案(4)在线全文阅读。
相关推荐: