x?1?3?e,x?0;11.设随机变量X与Y相互独立,其概率密度分别为f(x)??3,
?0,x?0.??2y,0?y?1;,求E(XY)和E(X?Y). f(y)???0,其他.解:E(X)??????x?f(x)dx????0????21?xe3dx?3;E(Y)??y?f(y)dy??2y2dx?;
??033xE(XY)?E(X)E(Y)?2;E(X?Y)?E(X)?E(Y)?11. 32212.若随机变量X与Y相互独立,都服从标准正态分布,试求:E(X?Y)和
D(X2?Y2).
解:X~N(0,1),E(X)?0,D(X)?1,E(X2)?D(X)?[E(X)]2?1;
Y~N(0,1),E(Y)?0,D(Y)?1,E(Y2)?D(Y)?[E(Y)]2?1;
E(X2?Y2)?E(X2)?E(Y2)?2,
D(X2?Y2)?D(X2)?D(Y2)?2D(X2)?2{E(X4)?[E(X2)]2}
?2{?x4????1e2??x22dx?1}?2{3?1}?4.
13.民航机场的送客汽车载有20名乘客,从机场开出,乘客可以在10个车站下车.如果到达某一车站无人下车,则在该站不停车,设随机变量X表示停车次数,并假定每个乘客在各个车站下车是等可能的.求平均停车次数. 解:X~B(10,p),p?1?(9209),E(X)?np?10[1?()20]. 101014.将n个球(1~n号)随机地放入n只盒子(1~n号)中,1只盒子装1个球.若1个球装入与球同号的盒子中,称为1个配对,记X为总配对数,求E(X). 解:X~B(n,p),p?(n?1)!1?,E(X)?np?1. n!n?6xy2,0?x?1,0?y?1;15.设二维随机变量(X,Y)的联合概率密度为f(x,y)??,
0,其他.?试写出(X,Y)的协方差矩阵.
解:E(X)?2x?f(x,y)d??6xdxy????dy?D001212, 311D(X)?E(X2)?[E(X)]2?; ,
182E(X2)???x2?f(x,y)d??6?x3dx?y2dy?D0011E(Y)???y?f(x,y)d??6?xdx?y3dy?D002211113, 43322,D(X)?E(X)?[E(X)]?;
805E(Y)???y?f(x,y)d??6?xdx?y4dy?D0011E(XY)???xy?f(x,y)d??6?x2dx?y3dy?D001, 2cov(X,Y)?E(XY)?E(X)E(Y)?0;
?1?0cov(X,Y)??18??D(X)协方差矩阵:???. ??3cov(X,Y)D(Y)???0?80??16.设二维随机变量(X,Y)的联合概率密度为f(x,y)???1,0?x?1,y?x;?0,其他.,证明X与
Y不相关.
证:E(X)???x?f(x,y)d???xdx?dy?D0?x1xD0?x1x2, 3E(Y)???y?f(x,y)d???dx?ydy?0, E(XY)???xy?f(x,y)d???xdx?ydy?0,
D0?x1xcov(X,Y)?E(XY)?E(X)E(Y)?0,
显然D(X)?0,D(X)?0,故?XY?0,所以X与Y不相关. 17.设二维随机变量(X,Y)的联合分布律为,
Y 1 2 X ?1 0.2 0.1 0 0.1 0.0 1 0.1 0.1 3 求X与Y的相关系数. 解:
0.2 0.1 0.1 X P ?1 0.5 0 0.2 1 0.3 E(X)??1?0.5?0?0.2?1?0.3??0.2,
E(X2)?(?1)2?0.5?02?0.2?12?0.3?0.8,D(X)?E(X2)?[E(X)]2?0.76;
Y P 1 0.4 2 0.2 3 0.4 E(Y)?1?0.4?2?0.2?3?0.4?2,
E(Y2)?12?0.4?22?0.2?32?0.4?4.8,D(Y)?E(Y2)?[E(Y)]2?0.8;
XY P ?3 0.2 ?2 0.1 ?1 0.2 0 0.2 1 0.1 2 0.1 3 0.1 E(XY)?(?3)?0.2?(?2)?0.1?(?1)?0.2?0?0.2?1?0.1?2?0.1?3?0.1??0.4,cov(X,Y)?E(XY)?E(X)E(Y)?0,?XY?18.设随机变量X的概率密度为f(x)?是否相互独立? 解:E(X)?cov(X,Y)?0.
D(X)D(Y)1?xe,???x???,问X与X是否不相关?21?xx?f(x)dx?x??????2edx?0, ??????1?xE(X2)??x2?f(x)dx??x2edx??x2e?xdx?2,
????02????D(X)?E(X2)?[E(X)]2?2;
令Y?X,E(Y)?2??2?????x?f(x)dx??xe?xdx?1,
0??2????1?xE(Y)??x?f(x)dx??xedx??x2e?xdx?2,
????02D(Y)?E(Y2)?[E(Y)]2?1;
E(XY)??xx?f(x)dx??xx????????1?xedx?0, 2cov(X,Y)?E(XY)?E(X)E(Y)?0,?XY?所以X与Y不相关,不相互独立. .
cov(X,Y)?0,
D(X)D(Y)19.设D(X)?25,D(X)?36,相关系数?XY?0.4,试求:D(X?Y)和D(X?Y).
D(X?Y)?D(X)?D(Y)?2cov(X,Y)?D(X)?D(Y)?2?XYD(X)D(X)?85D(X?Y)?D(X)?D(Y)?2cov(X,Y)?D(X)?D(Y)?2?XYD(X)D(X)?37
20.设随机变量X~U(0,1),试求X的k阶原点矩. 解:f(x)????1?1,(0,1);1kkk;E(X)??x?f(x)dx??x?1dx?.
??0k?1?0,其他.XY?,试求: 32(1)Z的数学期望和方差;(2)X与Z的相关系数;(3)问X与Z是否相互独立?
122解:(1)(X,Y)~N(1,3;0,4;?),E(X)?1,D(X)?9,E(Y)?0,D(Y)?16,
22221.设二维随机变量(X,Y)~N(1,3;0,4;?),设Z?12?XY??0.5,cov(X,Y)??XYD(X)D(Y)??6,
E(X2)?D(X)?[E(X)]2?10,E(XY)?cov(X,Y)?E(X)E(Y)??6,
XY111?)?E(X)?E(Y)?; 32323XY11XY1D(Z)?D(?)?D(X)?D(Y)?2cov(,)?1?4?cov(X,Y)?33294323E(Z)?E((2)?XZ?11?cov(X,Z)E(XZ)?E(X)E(Z)33???0,
D(X)D(Z)3?333X2XY111?)?E(X2)?E(XY)?; 其中E(XZ)?E(323232(3)X~N(1,3),Z~N(,3),且?XZ?0,所以X与Z相互独立.
13
习题五
1.进行600次伯努利试验,事件A在每次试验中发生的概率为p?2,设Y表示600次试5}. 验中事件A发生的总次数,利用切比雪夫不等式估计概率P{216?Y?264解:E(Y)?np?600?223?240,D(Y)?np(1?p)?600???144, 555D(X)切比雪夫不等式:P{X?E(X)??}?1? 2?P{216?Y?264}?P{Y?240?24}?1?1443?. 24242.若随机变量X1,X2,?,X100相互独立且都服从区间(0,6)上的均匀分布.设Y??Xi?1100i,
}. 利用切比雪夫不等式估计概率P{260?Y?340解:E(Xi)?3,D(Xi)?3,E(Y)?300,D(Y)?300,
P{260?Y?340}?P{Y?300?40}?1?30013?. 240163.利用切比雪夫大数定律证明泊松大数定律:设X1,X2,?,Xn,?为相互独立的随机变量序列,有P{Xn?1}?pn,P{Xn?0}?1?pn,(0?pn?1),n?1,2,?,则
X1,X2,?,Xn,?服从大数定律.
11?1?证:E(Xi)?pi,D(Xi)?pi(1?pi)?,E(?Xi)??E(Xi),
4ni?1ni?11?1D(?Xi)?2ni?1n?D(X)?nii?1?1n1, ??244n由切比雪夫不等式,对任给的??0,有
11P{?Xi??E(Xi)??}?1?ni?1ni?1??1n2?D(X)ii?1??2?1?1, 4n?21?1?limP{?Xi??E(Xi)??}?1,故X1,X2,?,Xn,?服从大数定律. n??ni?1ni?14.调整200台仪器的电压,假设调整电压过高的可能性为0.5,试求调整电压过高的仪器台数在95至105台之间的概率.
解:设Y表示调整电压过高的仪器台数,
E(Y)?np?200?0.5?100,D(Y)?np(1?p)?200?0.5?0.5?50,
P{95?Y?105}??(105?10095?10022)??()??()??(?),
2250502)?1?0.5222. 2?2?(5.某射手每次射击的命中率为p?0.8,现射击100发子弹,各次射击互不影响,求命中
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库概率论与数理统计习题解答全稿(1-7)(7)在线全文阅读。
相关推荐: