解:Y?(X?X)/2???FX(x),y?0?X,X?0,FY(y)??,Y不是连续型随机变量.
y?0?0,X?0?0,X27.设随机变量X~N(?,?2),写出:(1)Y?e;(2)Y?X的概率密度. 解:(1)函数y?g(x)?ex在整个定义域上处处可导、单调增加,
其反函数为x?h(y)?lny,有x??h?(y)?1,y?0, y11?ey?2?2当y?0时,fY(y)?fX[h(y)]?h?(y)?fX(lny)??(lny??)22?2?1, y(lny??)?1?12e2??,y?0?当y?0时,fY(y)?0,fY(y)???2?; y?0,,y?0?(2)当y?0时,FY(y)?P{Y?y}?P{X?y}?P{?y?X?y}??1fY(y)?FY?(y)?fX(y)?fX(?y)(?1)?e?2?(y??)22?2?y?yfX(x)dx,
;
?1?e?2?(y??)22?2(y??)(y??)?1??122e2??e2?,y?0?当y?0时,fY(y)?0;fY(y)???2?. ?2??0,,y?0?22?3x2,0?x?1;228.设随机变量X的概率密度为f(x)??,写出Y?1?X的概率密度.
?0,其他.2解:当0?x?1时,函数y?g(x)?1?x处处可导、单调增加,
其反函数为x?h(y)?1?y,有|x?|?|h?(y)|?1,0?y?1,
21?y13?1?y, 221?y当0?y?1时,fY(y)?fX[h(y)]?h?(y)?fX(1?y)??3?1?y,0?y?1当y?0时,fY(y)?0;fY(y)??2.
?其他?0,?1?x,0?x?2;29.设随机变量X的概率密度为f(x)??2,令Y?X(2?X),写出Y的分
??0,其他.布函数及概率密度.
解:当0?y?1时,FY(y)?P{Y?y}?P{X(2?X)?y}
211xdx??xdx ?1?1?y;
1?1?y22y?0?0,?当y?1时,FY(y)?1;当y?0时,FY(y)?0;FY(y)??1?1?y,0?y?1,
?1,y?1??P{X?1?1?y}?P{X?1?1?y}??01?1?y?1,0?y?1?fY(y)?FY?(y)??21?y.
?0,其他?(x?2y)?2e?,0?x,0?y;30.设二维随机变量(X,Y)的联合概率密度是f(x,y)??,求随机
?0,其他.变量Z?X?2Y的分布函数和概率密度. 解:FZ(z)?P{Z?z}?P{X?2Y?z}
z?x?z?z?z??dx?22e?(x?2y)dy,z?0?1?e?ze,z?0??0??, 0z?0?0,?0,z?0??ze?z,z?0. fZ(z)?FZ?(z)???0,z?031.已知随机变量X、Y相互独立,X服从参数为?的指数分布,Y服从区间(0,h)(h?0)上的均匀分布,写出X?Y的概率密度.
解:G?{(x,z)x?0,0?z?x?h}?{(x,z)x?0,x?z?x?h},
(1)0?z?h,fZ(z)??(2)z?h,fZ(z)??????????fX(x)fY(z?x)dx???e??x0zz?hzfX(x)fY(z?x)dx???e??x11dx?(1?e??z); hh11dx?e??z(e?h?1); hh??0,z?0??1(3)z?0,fZ(z)?0.fZ(z)??(1?e??z),0?z?h.
?h?1??z?he(e?1),z?h??h32.设二维随机变量(X,Y)的联合概率密度是f(x,y)???2(x?y),0?x?y?1;,求随机
其他.?0,变量Z?X?Y的概率密度.
解:G?{(x,z)0?x?z?x?1}?{(x,z)0?x?1,2x?z?x?1},
(1)0?z?1,fZ(z)??fX(x)fY(z?x)dx??2zdx?z2;
????z20(2)1?z?2,fZ(z)??????fX(x)fY(z?x)dx??2zdx?2z?z2;
z2z?1?0,z?0或z?2?(3)z?0或z?2,fZ(z)?0.fZ(z)??z2,0?z?1.
?2z?z2,1?z?2?33.设随机变量X与Y相互独立,X~N(0,1),Y~N(0,1),求Z?X/Y的概率密度. 解:G?{(y,z)yz?R,y?R},
????fZ(z)????yf(yz,y)dy??0y?1e2??y2z2?y22dy??y???01e2??y2z2?y22dy?1?(z2?1),
z?R.
习题四
1.一箱产品中有件3件正品和2件次品,不放回地任意取2件,X表示取到的次品数,求平均次品数E(X). 解:X的分布律:
X P
0 1 2 3 106 101 10E(X)?0?361?1??2??0.8. 1010101?xe,???x???, 22.设随机变量X服从拉普拉斯分布,其概率密度为f(x)?计算E(X)和D(X). 解:E(X)?1?xx?f(x)dx?x??????2edx?0, ??????1?xE(X2)??x2?f(x)dx??x2edx??x2e?xdx?2,
????02????D(X)?E(X2)?[E(X)]2?2.
?x,0?x?1;?3.设随机变量X的概率密度为f(x)??2?x,1?x?2;,试求E(X)和D(X).
?0,其他.?解:E(X)?2?????x?f(x)dx??x2dx??x(2?x)dx?1,
0121320112E(X)??x?f(x)dx??xdx??x2(2?x)dx?????7, 6D(X)?E(X2)?[E(X)]2?1. 62?x?x2?2e2?,x?0;4.设随机变量X服从瑞利分布,其概率密度为f(x)???,(??0),
?0,x?0.?试求E(X)和D(X).
????解:E(X)????x?f(x)dx??0xx?x2?2e2?dx?x?x22?2?,
E(X2)??x2?f(x)dx????????0x2?2?e2?dx?2?2,
2D(X)?E(X2)?[E(X)]2?2?2?2?2.
??t5.地面雷达搜索飞机,在时间段(0,t)内发现飞机的概率为P(t)?1?e试求发现飞机的平均搜索时间.
,(??0),
?1?e??t,t?0;??e??t,t?0;解:设随机变量T表示发现飞机的时间,F(t)??,f(t)??,
t?0.?0,?0,t?0.E(T)??t?f(t)dt??t?e??tdt???0????1?.
226.已知随机变量X~U(??,?),试求Y?cosX和Y?cosX的数学期望.
?1???1?,(??,?);dx?0, 解:f(x)??2?,E(Y)??cosx?f(x)dx??cosx????2???0,其他.E(X2)??cos2x?f(x)dx??cos2x???????11dx?. 2?27.已知随机变量X~P(?),试求E(1). 1?X解:P{X?k}??kk!e??(k?0,1,2,?),
??11?k???ke????E()???e?e??1?X1?kk!(1?k)!?k?0k?0?n!?n?1??ne???(?n?0??nn!?1)
?e???(e??1)?1?(1?e??).
?e?x,x?0;?2X8.随机变量X的概率密度为f(x)??,求Y?2X和Z?e的数学期望.
0,x?0.?解:E(Y)????????2x?f(x)dx??2xe?xdx?2,
0??0??E(Z)??e?2x?f(x)dx??e?2xe?xdx???1. 3?12y2,0?y?x?1;9.设(X,Y)的联合概率密度为f(x,y)??
?0,其他.试求:E(X)、E(Y)、E(XY)、E(X?Y). 解:E(X)?2x?f(x,y)d??dx12xydy?????D001x224; 5E(Y)???y?f(x,y)d???dx?12y3dy?D001x1x3; 51; 2xE(XY)???xy?f(x,y)d???dx?12xy3dy?D0022221E(X?Y)???(x?y)?f(x,y)d???dx?(x2?y2)12y2dy?D0016. 1510.随机变量Y服从参数为1的指数分布,令随机变量Xk??试求:E(X1?X2)数学期望.
?0,Y?k;,
k,Y?k.??e?y,y?0;?0,Y?1;?0,Y?2;解:f(y)??,X1??,X2??,
?1,Y?1.?2,Y?2.?0,y?0.E(X1)?0?P{Y?1}?1?P{Y?1}?e?1E(X2)?0?P{Y?2}?2?P{Y?2}?2e?2E(X1?X2)?E(X1)?E(X2)?e?1?2e?2.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库概率论与数理统计习题解答全稿(1-7)(6)在线全文阅读。
相关推荐: