一部分原有消费者将买不到商品。其中,对仍能买到商品的消费者来说,他们的消费者剩余由于商品价格的下降而增加了,其增加量为矩形面积A;对没有买到商品的原有消费者来说,他们的消费者剩余的损失为三角形面积B。总体来说,市场上消费者剩余的变化量为A-B。 然后看生产者。由于厂商的供给数量只有Q1,这意味一部分原有生产者将退出生产。其中,对继续生产的厂商而言,他们的生产者剩余由于商品价格的下降而减少了,其损失为矩形面积A;对退出生产的厂商而言,他们的生产者剩的损失为三角形面积C。总体来说,市场上生产者剩余的变化量为-A-C。
最高限价福利分析图
最后,分析市场总剩余的变化。市场总剩余的变化等于市场上消费者剩余的变化量加生产者剩余的变化量,即为(A—B)+(-A- C)=-B-C。其中,由于降价导致的生产者剩余的损失-A转化为消费者剩余的增加A;-B-C是最高限价导致的市场总剩余的损失。经济学中,把这两个三角形B和C构成的面积称为无谓损失。
进一步考虑,如果政府实行最高限价的目的是更多地顾及消费者的福利,那么,在图中可见,市场上消费者剩余的增加量A大于损失量B,总的说来,消费者的福利是增加了,即政府的目的达到了。但是,如果消费者的需求是缺乏弹性的,消费者对价格下降可能无法作出充分的回应,那么,就会出现另一种局面,见图。在图中,陡峭的需求曲线表示消费需求对价格的变化是缺乏弹性的,于是,市场上消费者剩余的损失B大于增加量A,这样的最高限价既减少了生产者剩余,又减少了消费者剩余,这无疑是很糟糕的。
需求价格缺乏弹性的最高限价的福利分析
(2)价格管制之最低限价的福利效应。在图中,假定政府实行最低限价政策,将价格由均衡价格水平P*提高到Po,即将最低价格定为P0。于是,受价格上升的影响,消费者的需求量减少为Q1,生产者的供给量增加为Q2,供给过剩的现象发生。假定生产者的销售量取决与需求量,那么,生产者实际提供的产量只能是Q1。这就是说,一部分原有生产者将不得不退出生产,.一部分原有消费者将买不到商品。
最低限价福利分析图示
先看消费者:在高价位继续购买商品的消费者的剩余损失为矩形面积A,买不到商品的原有消费者的消费者剩余损失为矩形面积B,总的消费者剩余的变化为-A-B。再看生产者:在高价位继续生产者的剩余增加量为矩形面积A,退出生产的原有厂商的剩余损失为三角形面积C,总的生产者剩余的变化为A-C。最后,市场总剩余的变化等于(-A-B)+(A-C)=-B-C。其中,由于提价导致的消费者剩余的损失-A转化为生产者剩余的增加A,这也反映政府实行最低限价的目的往往更多地是顾及生产者的福利;与前面的最高限价一样,最低限价导致的市场无谓损失也是-B-C。
下面,我们对最高限价和最低限价的福利效应作一个综合分析。 仔细分析可以发现,虽然这两种限价政策对价格调控的方向是相反的,但是,它们都使得市场交易量减少。具体地看,最高限价导致需求量Q2大于供给量Q1(即供给短缺);最低限价导致供给量Q2大于需求量Q1(即供给过剩)。于是,根据市场交易的短边决定原则,最高限价下的市场交易量取决于小的供给量Q1(因为,消费者只能购买到Q1数量的商品),最低限价下的市场交易量取决于小的需求量Q1(因为,销售量通常总是等于需求量)。很清楚,这两种限价政策都使市场交易量都由Q*减少为Q1。如前所述,只有当完全竞争市场的交易达到均衡产量Q*时,市场福利才是最大的;任何小于Q*的市场交易量,譬如,市场福利都不是最大的,或
者说,偏离Q*的任何数量的重新配置都会减少总剩余。
由于两种限价政策都使市场交易量由Q*减少为Q1,它们限制了市场的交易,从而导致了福利的损失。事实上,在产量Q1到Q*的范围,消费者愿意支付的最高价格都大于生产者能够接受最低价格,双方进行自愿交易是互利的。但是,限价政策使得这部分交易无法实现,要么是生产者因为价格过低只愿意提供Q1数量的产品,要么是消费者因为价格过高只愿意购买Q1数量的商品,于是,市场交易规模只能是Q1,它小于Q*。只因为如此,经济学家指出,这两种价格管制都由于限制了市场机制的有效运行而导致了三角形的无谓损失,即图中阴影部分的面积B与C。
最后需要指出,各国政府在一定时期都会采取限价政策,这些政策的实行往往是根据经济形势的需要和为了实现一些经济目标,这都是必要的。但是,在实行限价政策时,需要考虑到这些政策可能带来的不良影响,包括对市场效率和福利的影响,综合权衡利弊,合理设计,以收到好的政策效果。
(3)税收的福利效应。以销售税为例。譬如说,对每一单位商品征收t元的销售税,那么,我们会思考以下的问题:商品价格是否也上涨t元呢?销售税最终由谁来承担呢?是由消费者还是由生产者来承担?销售税的福利效应又是如何?下面来分析和回答这些问题。 我们以从量税来分析销售税的影响。从量税是按每销售一单位商品计征一定货币量的税收。在图中,无从量税时均衡价格和均衡数量分别为Q*和P*;假定政府对销售每一单位商品征收t元的从量税。因为是征收销售从量税,这便使得消费者支付的买价高于生产者得到的净价格,两者之间的差额刚好等于须上缴的销售每一单位商品的从量税额t元。这种关系在图中表现为:在消费者的需求曲线和生产者的供给曲线之间打进了一个垂直的“楔子”,其高度就是单位商品的从量税额t,即消费者支付的买价为Pd,生产者得到的净价格是Ps,Pd和 Ps之间的垂直距离就是单位商品的税额t。由这个基本分析框架出发,可以进一步分析销售税的福利效应。
税收的福利效应
首先,销售税导致商品价格上升,从而使得消费者对商品的需求减少,进而使得生产者的供给也随之减少。在图中表现为,销售税使得商品价格由P*上升到Pd,消费者的需求量
和生产者的供给量都由Q*减少到Q1。尤其是,商品价格上升的幅度小于单位商品的从量税额,即(Pd-P*) 其次,销售税是由消费者和生产者共同承担的。由图可见,由于征收从量税,消费者支付的商品价格由P*上升到Pd,多支付的部分相当于FG,这就是消费者承担的单位商品的税收额;生产者得到的净价格由P*减少为PS,减少的部分相当于GH,这就是生产者承担的单位商品的税收额;两者之和就是单位商品的税额,即FG+GH=t。 在以上分析的基础上,我们进一步分析销售税的福利效应。由于销售税导致的价格上升和需求量及供给量的减少,使得消费者和生产者的剩余都减少,消费者剩余的损失为矩形面积A加三角形面积C,即-A-C,生产者剩余的损失为矩形面积B加三角形面积J,即-B-J。政府由于销售税增加了财政收入,其获得的销售税总额等于单位商品的从量税额乘以销售量,即(Pd-Ps) ?Q1=t ?Q1,等于图中两个矩形面积A+B。考虑到政府的税收收入通常用于社会公众项目的支出,可为视为社会福利,于是,从市场整体的角度看,福利变化量=消费者剩余的变化量十生产者剩余的变化量十政府的销售税收人=(-A-C)+(-B-J)+(A+B)一-C-J。具体的看,在消费者剩余的损失(-A—C)和生产者剩余的损失(-B-J)中,-A-B转化为政府收入A+B,而余下的-C-J则是无谓损失。所以,销售税最终导致了市场福利的减少。 第七章 不完全竞争的市场 1.根据图20中线性需求曲线d和相应的边际收益曲线MR,试求: (1)A点所对应的MR值; (2)B点所对应的MR值。 121答: AR: P=-Q?3, TR=P×Q= -Q2?3Q, MR=TR′ (Q)= -Q?3 5552(1)A(Q=5,P=2) MR (5)= -Q?3=1; 52(2)B(Q=10,P=1) MR (10)= -Q?3=-1 5本题也可以用MR=P(1-- 1)求得: Ed1)=2(1- EdEA=2,PA=2,则MR=P(1-- 1)=1 2EB= 111,PB=1,则MR=P(1--)=1(1- )=-1 E20.5d2.图21是某垄断厂商的长期成本曲线、需求曲线和收益曲线:试在图中标出: (1)长期均衡点及相应的均衡价格和均衡产量; (2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线; (3)长期均衡时的利润量。 答:(1)长期均衡点为E点,因为在E点有MR=LMC。由E点出发,均衡价格为P0,均衡数量为Q0。 (2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线如图所示。在Q0的产量上,SAC曲线和LAC曲线相切;SMC曲线和LMC曲线相交,且同时与MR曲线相交。 (3)长期均衡时的利润量由图中阴影部分的面积表示,即π=[AR(Q0)-SAC(Q0)]·Q。 3.某垄断厂商的短期总成本函数为STC=0.1Q—6Q+140Q+3 000,反需求函数为P=150— 3.25Q,求该厂商的短期均衡产量和均衡价格? 解:TR=P(Q)*Q=(150-3.25Q)Q=150Q-3.25Q2, MR=TR′(Q)=150-6.5Q MC= STC′(Q)=0.3Q2-12Q+140 MR=MC, ?0.3Q2-12Q+140=150-6.5Q , (3Q+5)(Q-20)=0解得:Q1=20,Q2=-(舍去) P(20)=150—3.25Q=85 2 4.已知某垄断厂商的成本函数为TC=0.6Q+3Q+2,反需求函数P=8-0.4Q.求: (1)利润最大化时的产量、价格、收益、利润。 (2)厂商收益最大化时的产量、价格、收益、利润。 (3)比较(1)和(2)的结果。 3 2 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库西方经济学(微观)课后习题答案详解 - 图文(10)在线全文阅读。
相关推荐: