4.(2011?江苏南京)问题情境:已知矩形的面积为a(a为常数,a>0),当该矩形的长为多
少时,它的周长最小?最小值是多少?
数学模型:设该矩形的长为x,周长为y,则y与x的函数关系式为y?2(x?探索研究:⑴我们可以借鉴以前研究函数的经验,先探索函数y?x?① 填写下表,画出函数的图象:
x …… y ……
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还
可以通过配方得到.请你通过配方求函数y?x?1x2
ax)(x>0).
1x (x>0)的图象性质.
y 5 4 14 13 12 1 2 3 4 …… …… 3 2 1 -1 O -1 1 2 3 4 5 x (x>0)的最小值.
解决问题:⑵用上述方法解决“问题情境”中的问题,直接写出答案.
21
5.(2011?江苏无锡)(本题满分10分)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案 (简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表: 税现行征税方法 税率 5% 10% 15% 20% 25% 草案征税方法 速算扣除数 月应纳税额x 0 25 125 375 1375 x≤1 500 1500 例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算: 方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元). 方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元)。 (1)请把表中空缺的“速算扣除数”填写完整; (2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元? (3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不 变,那么乙今年3月所缴税款的具体数额为多少元? 22 6、(2011?成都)如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点. (1)求此抛物线的函数表达式; (2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长; (3)在抛物线上是否存在异于B、C的点M,使△MBC中BC 边上的高为?若存在,求出点M的坐标;若不存在,请说 明理由. 23 7.(2011?重庆江津区)在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长AB=y米,BC=x米.(注:取 π=3.14) (1)试用含x的代数式表示y; (2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428 元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元; ①设该工程的总造价为W元,求W关于x的函数关系式; ②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由? ③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由. 24 8、(2011?湖北荆州)如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y= 14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1. (1)求B点坐标; (2)求证:ME是⊙P的切线; (3)设直线AC与抛物线对称轴交于N,Q点是此轴称轴上不与N点重合的一动点, ①求△ACQ周长的最小值; ②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式. 25 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2010-2011中考数学压轴题(备战2012)(5)在线全文阅读。
相关推荐: