6.(2010·安徽省芜湖市)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-33,1)、C(-33,0)、O(0,0).将此矩形沿着过E(-3,1)、F(-0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′. (1)求折痕所在直线EF的解析式;
(2)一抛物线经过B、E、B′三点,求此二次函数解析式; (3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,
433,
说明理由.
6
y B C F E O A x
7.(2010·河南省)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
A M O B C x y
7
8.(2010·河南省)如图,直线y=k1x+b与反比例函数y=6),B(a,3)两点. (1)求k1、k2的值; (2)直接写出k1x+b-
k2xk2x(x>0)的图象交于A(1,
>0时x的取值范围;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.
y A B C P O E D x 8
9.(2010·浙江省杭州市)在平面直角坐标系xOy中,抛物线的解析式是y=
14x+1,点C
2
的坐标为(-4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.
y (1)写出点M的坐标;
(2)当四边形CMQP是以MQ,PC为腰的梯形时.
①求t关于x的函数解析式和自变量x的取值范围; ②当梯形CMQP的两底的长度之比为1 :2时,求t的值.
Q
9
B 1 M A x P C O 1
10.(2010·吉林省)如图①,在等腰梯形ABCD中,AD∥BC,AE⊥BC于点E,DF⊥BC于点F.AD=2cm,BC=6cm,AE=4cm.点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围成的封闭图形记为M.若点P在线段AE上运动时,点Q也
2
随之在线段DF上运动,使图形M的形状发生改变,但面积始终为10cm.设EP=x cm,FQ..=y cm,解答下列问题:
(1)直接写出当x=3时y的值;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围; (3)当x取何值时,图形M成为等腰梯形?图形M成为三角形? (4)直接写出线段PQ在运动过程中所能扫过的区域的面积. A D
10
A D P Q B
C
B
C
E
图①
F E F
(备用图)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2010-2011中考数学压轴题(备战2012)(2)在线全文阅读。
相关推荐: