77范文网 - 专业文章范例文档资料分享平台

《应用回归分析》课后习题部分答案-何晓群版(6)

来源:网络收集 时间:2019-03-28 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

残差 总计 570180.931 1.370E8 17 20 33540.055 a. 预测变量: (常量), 受灾面积x6, 建筑业x3, 人口x4, 农业x1, 最终消费x5, 工业x2。 b. 预测变量: (常量), 受灾面积x6, 建筑业x3, 农业x1, 最终消费x5, 工业x2。 c. 预测变量: (常量), 受灾面积x6, 农业x1, 最终消费x5, 工业x2。 d. 预测变量: (常量), 农业x1, 最终消费x5, 工业x2。 e. 因变量: 财政收入y 模型汇总 模型 标准 估计的误R 1 2 3 4 .998a .998b .998c .998d R 方 .996 .996 .996 .996 调整 R 方 .994 .995 .995 .995 差 194.34750 187.93046 185.47913 183.13944 R 方更改 .996 .000 .000 .000 F 更改 602.127 .026 .585 .574 df1 6 1 1 1 df2 14 14 15 16 更改统计量 Sig. F 更改 .000 .875 .456 .460 a. 预测变量: (常量), 受灾面积x6, 建筑业x3, 人口x4, 农业x1, 最终消费x5, 工业x2。 b. 预测变量: (常量), 受灾面积x6, 建筑业x3, 农业x1, 最终消费x5, 工业x2。 c. 预测变量: (常量), 受灾面积x6, 农业x1, 最终消费x5, 工业x2。 d. 预测变量: (常量), 农业x1, 最终消费x5, 工业x2。 回归方程为:y?874.604?0.611x1?0.353x2?0.637x5

逐步回归法:输出结果

模型汇总 模型 标准 估计的误R 1 2 3 .994a .996b .998c R 方 .989 .992 .996 调整 R 方 .988 .991 .995 差 285.68373 247.77768 183.13944 R 方更改 .989 .003 .004 F 更改 1659.441 7.258 15.948 df1 1 1 1 df2 19 18 17 更改统计量 Sig. F 更改 .000 .015 .001 ?a. 预测变量: (常量), 最终消费x5。 b. 预测变量: (常量), 最终消费x5, 农业x1。 c. 预测变量: (常量), 最终消费x5, 农业x1, 工业x2。

25

Anovad 模型 1 回归 残差 总计 2 回归 残差 总计 3 回归 残差 总计 平方和 1.354E8 1550688.654 1.370E8 1.359E8 1105088.003 1.370E8 1.364E8 570180.931 1.370E8 df 1 19 20 2 18 20 3 17 20 均方 1.354E8 81615.192 F 1659.441 Sig. .000a 6.794E7 61393.778 1106.637 .000b 4.547E7 33540.055 1355.753 .000c a. 预测变量: (常量), 最终消费x5。 b. 预测变量: (常量), 最终消费x5, 农业x1。 c. 预测变量: (常量), 最终消费x5, 农业x1, 工业x2。 d. 因变量: 财政收入y 系数a 模型 非标准化系数 B 1 (常量) 最终消费x5 2 (常量) 最终消费x5 农x1 3 (常量) 最终消费x5 农x1 工x2 26

业-.353 .088 -1.454 -3.994 .001 .992 -.696 -.062 业-.611 .124 -1.073 -4.936 .000 .987 -.767 -.077 874.604 .637 106.869 .089 业-.414 .154 -.726 -2.694 .015 .987 -.536 -.057 1011.912 .311 136.901 .049 710.372 .180 标准 误差 90.891 .004 标准系数 试用版 t 7.816 .994 40.736 Sig. .000 .000 零阶 相关性 偏 部分 .994 .994 .994 1.718 7.392 6.374 .000 .000 .994 .832 .135 3.516 8.184 7.142 .000 .000 .994 .866 .112 系数a 模型 非标准化系数 B 1 (常量) 最终消费x5 2 (常量) 最终消费x5 农x1 3 (常量) 最终消费x5 农x1 工x2 a. 因变量: 财政收入y 业-.353 .088 -1.454 -3.994 .001 .992 -.696 -.062 业-.611 .124 -1.073 -4.936 .000 .987 -.767 -.077 874.604 .637 106.869 .089 业-.414 .154 -.726 -2.694 .015 .987 -.536 -.057 1011.912 .311 136.901 .049 710.372 .180 标准 误差 90.891 .004 标准系数 试用版 t 7.816 .994 40.736 Sig. .000 .000 零阶 相关性 偏 部分 .994 .994 .994 1.718 7.392 6.374 .000 .000 .994 .832 .135 3.516 8.184 7.142 .000 .000 .994 .866 .112 回归方程为:y?874.604?0.636x1?0.353x2?0.637x5

5.10 (1) 模型汇总 模型 R 1 2 .908a .000b R 方 .824 .000 调整 R 方 .736 .000 标准 估计的误差 625.88326 1217.15945 ?a. 预测变量: (常量), x6, x3, x2, x4, x5。 b. 预测变量: (常量) Anovac 模型 1 回归 残差 总计 平方和 1.830E7 3917298.522 2.222E7 df 5 10 15 27

均方 3660971.683 391729.852 F 9.346 Sig. .002a 2 回归 残差 总计 .000 2.222E7 2.222E7 0 15 15 .000 1481477.129 . .b a. 预测变量: (常量), x6, x3, x2, x4, x5。 b. 预测变量: (常量) c. 因变量: y 系数a 模型 非标准化系数 B 1 (常量) x2 x3 x4 x5 x6 2 (常量) 5922.827 4.864 2.374 -817.901 14.539 -846.867 7542.938 标准 误差 2504.315 2.507 .842 187.279 147.078 291.634 304.290 标准系数 试用版 t 2.365 .677 .782 -1.156 .050 -.899 1.940 2.818 -4.367 .099 -2.904 24.789 Sig. .040 .081 .018 .001 .923 .016 .000 a. 因变量: y 回归方程为:y?5922.827?4.864x2?2.374x3?817.901x4?14.539x5?846.867x6 (2)后退法:输出结果 模型汇总 模型 R 1 2 .908a .907b R 方 .824 .824 调整 R 方 .736 .759 标准 估计的误差 625.88326 597.04776 ?a. 预测变量: (常量), x6, x3, x2, x4, x5。 b. 预测变量: (常量), x6, x3, x2, x4。 Anovac 模型 1 回归 残差 总计

平方和 1.830E7 3917298.522 2.222E7 df 5 10 15 28

均方 3660971.683 391729.852 F 9.346 Sig. .002a 2 回归 残差 总计 1.830E7 3921126.262 2.222E7 4 11 15 4575257.669 356466.024 12.835 .000b a. 预测变量: (常量), x6, x3, x2, x4, x5。 b. 预测变量: (常量), x6, x3, x2, x4。 c. 因变量: y 系数a 模型 非标准化系数 B 1 (常量) x2 x3 x4 x5 x6 2 (常量) x2 x3 x4 x6 a. 因变量: y ?标准系数 试用版 t 2.365 .677 .782 -1.156 .050 -.899 1.940 2.818 -4.367 .099 -2.904 2.675 .706 .760 -1.165 -.916 3.727 4.750 -4.913 -3.711 Sig. .040 .081 .018 .001 .923 .016 .022 .003 .001 .000 .003 标准 误差 2504.315 2.507 .842 187.279 147.078 291.634 2245.481 1.360 .486 167.776 232.489 5922.827 4.864 2.374 -817.901 14.539 -846.867 6007.320 5.068 2.308 -824.261 -862.699 y?6007.320?5.068x2?2.308x3?824.261x4?862.699x6

(3)逐步回归 模型汇总 模型 R 1 2 3 .498a .697b .811c R 方 .248 .485 .657 调整 R 方 .194 .406 .572 标准 估计的误差 1092.83206 937.95038 796.60909 a. 预测变量: (常量), x3。 29

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库《应用回归分析》课后习题部分答案-何晓群版(6)在线全文阅读。

《应用回归分析》课后习题部分答案-何晓群版(6).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/554139.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: