法1:2?2?x1?x2?2x12x2?a?2?x1x24?x1x2?3?a?2?x1x24?x1x2?3?4. x1x2 令t?1,则u?t??2?4t3?4t2?t?0?, x1x22?x1?x2?a?2?38可知u?t??u????1.即2???1. 22327xxxx??1212法2:2?2?x1?x2?2?x1?x2?a即 ??1a?xx?1222x1x2x1x2x1x2 由于x1x2?令t?2?x1?x2?x1x2?x1x2?4. x1x2x1x2,则u?t??t2?4?t?0?,可知u?t??ut?2??3334?3108?4?a.
故a?x1x2?2?x1?x2?成立.
x1x22?a?0?a?0?cx?a??c?即即b?1?且c?0 ?x的不动点为0和2∴22. 解: (1)设??c2bx?cb?1??4?a?2??2??2b?cx2(2)∵c=2 ∴b=2 ∴f?x???x?1?,
2?x?1?由已知可得2Sn=an-an2……①,且an ≠ 1.
2当n ≥ 2时,2 Sn -1=an-1-an, ?1……②
①-②得(an+an-1)( an-an-1+1)=0,
∴an=-an-1 或 an=-an-1 =-1, 当n=1时,2a1=a1-a12 ?a1=-1,
若an=-an-1,则a2=1与an ≠ 1矛盾.∴an-an-1=-1, ∴an=-n.
?1?∴要证不等式,只要证 ?1???n?只要证 nln?1?考虑证不等式
??n?1?1?1??1??1????1??,即证 ?1???e??1??e?n??n??n??nnn?1,
??1?1?1??1?1,即证 ?1?n?1ln1??ln??????1???.
n?nn?1???n?nx?ln?x?1??x(x>0) . (**) x?1
令g(x)=x-ln(1+x), h(x)=ln(x+1)-∴g'?x?=
x (x>0) . x?1xx, h'?x?=, 21?x?x?1?∵x>0, ∴g(x)、h(x)在(0, +∞)上都是增函数, g'?x?>0, h'?x?>0,∴∴g(x)>g(0)=0, h(x)>h(0)=0,∴x>0时,
x?ln?x?1??x. x?1an?1?11?令x?则(**)式成立,∴??nan??(3)由(2)知bn=
在
an?11?1?<<?1??, e?an?1111,则Tn=1????????. n23n1?1?1?ln?1???中,令n=1,2,3,?,2008,并将各式相加, n?1?n?n111232009111???????ln?ln?????ln?1???????, 232009122008232008得
即T2009-1<ln2009<T2008. 23.解:(1)令x1?x2?0,得f(0)?f(x0)?2f(0),
?f(x0)??f(0)??①,
令x1?1,x2?0得f(x0)?f(x0)?f(1)?f(0).
??f ?f(1)(??②0)
由①、②,得f?x0??f?1?.
?f(x)为单调函数,?x0?1.
(2)由(1)得f(x1?x2)?f(x1)?f(x2)?f(1)?f(x1)?f(x2)?1
?f(n?1)?f(n)?f(1)?1?f(n)?2,f(1)?1,
1. 2n?11111又?f(1)?f(?)?f()?f()?f(1).
222211?f()?0,b1?f()?1?1.
22111111?f(n)?f(n?1?n?1)?f(n?1)?f(n?1)?f(1)?2f(n?1)?1
222222111?2bn?1?2f(n?1)?2?f(n)?1?bn. ?bn?()n?1
222?f(n)?2n?1(n?N?),?an?
Sn?11111111111?????(1???????)?(1?) 1?33?5(2n?1)?(2n?1)23352n?12n?122n?111[1?()n]1111111114?2[1?(1)n]Tn?()0()1?()1()2???()n?1()n??()3???()2n?1?21222222222341?4
421?Sn?Tn?(1??)33n2?12[?131211n. ](?)]n[?()434n?2110?4n?(3?1)n?Cnn3n?Cnn?13n?1???Cn3?Cn?3n?1?2n?1
42114?Sn?Tn?[()n?]?0. ?Sn?Tn
33342n?1
ax(x?0),则an?1?f(an)?n,
1?an1?x1111??1,即??1, 得
an?1anan?1an111∴数列{}是首项为2、公差为1的等差数列,∴?n?1,即an?.
anann?11(2)?[f(x)]??,∴函数f(x)在点(n,f(n))(n?N*)处的切线方程为: 2(1?x)n1nnn2y??(x?n),令x?0,得bn?. ??2221?n(1?n)1?n(1?n)(1?n)bn??2?22?2??n??(n?1)?(n?)???,仅当n?5时取得最小值, anan2424.解:(1)? f(x)?2(3)?g(x)?f(x)(1?x)2?x(1?x),故cn?1?g(cn)?cn(1?cn),
11111111???c1??0,故cn?0,则,即. ???1?ccccc(1?c)c1?c2nnn?1n?1nnnn111111111∴?????(?)?(?)???(?) 1?c11?c21?cnc1c2c2c3cncn?1111?2??2. =?c1cn?1cn?111111112426又????????????1,
131?c11?c21?cn1?c11?c21?37211?24111故1??????2.
1?c11?c21?cn
只需4.5????5.5,解得?11????9,故?的取值范围为(?11,?9).
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库广东省广州市2013届高三考前训练题数学文试题(5)在线全文阅读。
相关推荐: