∴圆M的半径为r?231?(3)2?3,故圆M:(x?2)2?y2?3.
显然当直线l1的斜率不存在时不符合题意,
设l1的方程为y?3?k(x?1),即kx?y?3?k?0, 设l2的方程为y?3??1(x?1),即x?ky?3k?1?0, k∴点F1到直线l1的距离为d1?|3k?3|1?k2,点F2到直线l2的距离为d2?2|3k?1|1?k2,
?3k?3?63k?6k2∴直线l1被圆M截得的弦长s?23??, 2?1?k2???21?k???3k?1?23k?2k2直线l2被圆N截得的弦长t?21??, 2?1?k2???21?k??s63k?6k26(3k?k2)s??3∴?, 故为定值3. 22tt23k?2k2(3k?k)15. 解:(1)设A、B、M的坐标分别为(x0,0)、(0,y0)、(x,y),则
22
x20+y0=(m+1), ① →→
由AM=mMB,得(x-x0,y)=m(-x,y0-y),
2????x-x0=-mx,
∴?∴?m+1?y=m(y0-y).?y=y.?0
x0=(m+1)x,
m
?
②
y2
化简即得点M的轨迹Γ的方程为x+m2=1(m>0). 当0<m<1时,轨迹Γ是焦点在x轴上的椭圆;
当m=1时,轨迹Γ是以原点为圆心,半径为1的圆; 当m>1时,轨迹Γ是焦点在y轴上的椭圆.
1
(2)依题意,设直线CD的方程为x=ty+2,
2
将②代入①,得
m+1
(m+1)2x2+(m)2y2=(m+1)2,
?由?y
x+?m=1.
22
21x=ty+2,
3
消去x并化简整理,得(m2t2+1)y2+m2ty-4m2=0,
△=m4t2+3m2(m2t2+1)>0, 设C(x1,y1),D(x2,y2),则
m2t3m2
y1+y2=-22,yy=-. ③
mt+1124(m2t2+1)
假设在x轴上存在定点P(a,0),使PQ平分∠CPD, 则直线PC、PD的倾斜角互补,
y1y2∴kPC+kPD=0,即+=0,
x1-ax2-a11y1y2∵x1=ty1+2,x2=ty2+2,∴+=0, 11
ty1+2-aty2+2-a
化简,得4ty1y2+(1-2a)( y1+y2)=0. ④
m2t(1-2a)3m2t
将③代入④,得-22-22=0,即-2m2t(2-a)=0,
mt+1mt+1
∵m>0,∴t(2-a)=0,∵上式对?t∈R都成立,∴a=2. 故在x轴上存在定点P(2,0),使PQ平分∠CPD.
16.解:(1)由题意,a1?a2?a3?...?an?n(2n?1),a1?a2?a3?...?an?1?(n?1)(2n?1),两
式相减得an?4n?1,(n?2),而a1?3,?an?4n?1,(n?N?)
(2)cn?an4n?133??2?,cn?1?2?, 2n?12n?12n?12n?333cn?1?cn???0,?cn?1?cn
2n?12n?3(3)由(2)知c1?1是数列?cn?的最小项.
当x??时,对于一切非零自然数n,都有f(x)?0, 即?x?4x?2an?cn,??x2?4x?c1?1,即x2?4x?1?0, 2n?1解得x?2?3或x?2?3,?取??2?3. 17. 解:(1)
12-an-11112 ==-1,则-1=(-1) 2n-1 则an=n1+2ana1anan-1an-1111111a>a>a>?a1 ==a,因此,nn-1n-2n-12222n-12+2n2(1+2n-1)2(2) 由于an>a1+a2+?+an?1(131n1112+?+n-1)=?2231-121-21(1-n) 32又an=11< nn1+2212111152所以从第二项开始放缩: a1+a2+?+an<+2+?+n<+=
32231-162
因此
21(1-n)?Sn325 6?1??x(x?0)18.解:(1)F(x)??x,
?ex?x(x≤0)?当x?0时,F(x)?1?x≥2,即x?1时,F(x)最小值为2. x当x≤0时,F(x)?ex?x,在???,0?上单调递增,所以F(x)≤F(0)?1. 所以k?1时,F(x)的值域为(??,1]?[2,??].
1?k?(x?0)?2(2)依题意得F'(x)?? x?ex?k(x≤0)?''①若k?0,当x?0时,F(x)?0,F(x)递减,当x≤0时,F(x)?0,F(x)递增.
'②若k?0,当x?0时,令F(x)?0,解得x?1, k 当0?x?11''时,F(x)?0,F(x)递减,当x?时,F(x)?0,F(x)递增. kk' 当x?0时,F(x)?0,F(x)递增.
'③若?1?k?0,当x?0时,F(x)?0,F(x)递减.
'x 当x?0时,解F(x)?e?k?0得x?ln(?k), 当ln(?k)?x?0时,F(x)?0,F(x)递增, 当x?ln(?k)时,F(x)?0,F(x)递减.
'④k≤?1,对任意x?0,F(x)?0,F(x)在???,0?,?0,???上递减.
''综上所述,当k?0时,F(x)在(??,0]或(11,??)上单调递增,在(0,)上单调递减; kk当k?0时,F(x)在(??,0]上单调递增,在(0,??)上单调递减;
当?1?k?0时,F(x)在(ln(?k),0]上单调递增,在(??,ln(?k)),(0,??)上 单调递减;
当k≤?1时,F(x)在???,0?,?0,???上单调递减.
?f'(1)?a?b?1?b?a?1b19. 解:(1)f(x)?a?2,则有?. ,解得?x?c?1?2a?f(1)?a?b?c?0' (2)由(1)得f(x)?ax?a?1?1?2a. xa?1?1?2a?lnx,x?[1,??).g(1)?0, 令g(x)?f(x)?lnx?ax?x1?aa(x?1)(x?)a?11'ag(x)?a?2??. 2xxx11?a1?a'① 当0?a?时,,g(x)?0,g(x)是减函数, ?1.若1?x?a2a∴g(x) ?g(1)?0,即f(x)?lnx,故f(x)?lnx在[1,??)不恒成立.
11?a时,?1.若x?1,g'(x)?0,g(x)是增函数,∴g(x)?g(1)?0, 2a1 即f(x)?lnx,故x?1时f(x)?lnx.综上所述,a的取值范围是[,??).
21111(3)由(2)知,当a?时,有f(x)?lnx(x?1).令a?,则f(x)?(x? )?lnx.即当
2x22k?11k?1k11k?1?(?) (x?)?lnx.令x?,则lnx?1时,总有
2xk2kk?1k111111?(?),ln(k?1)?lnk?(?),k?1,2,???,n.将上述n个不等式累加得2kk?12kk?1②当a?ln(n?1)?11111111n?(??????)?,整理得1???...??ln(n?1)?223n2(n?1)23n2(n?1)
2220.解:(1)因为点Qn的坐标为(an,an),Qn?1的坐标为(an+1,an?1), 2所以点Pn?1的坐标为(an+1,4an?1),则4an?1?an,故an?1与an的关系为an?1?2/(1) 设切点为(t,t),则y?2x得2t?4,所以t?2.
12an. 4解不等式??a2?2,得2?a1?22.
?a1?2112112214a2?(a1)?a1.?2?a1?22,??a3?1.
4444641a3的取值范围是(,1).
41212111(3) 由an?1?an得lgan?1?lg(an),即lgan?1?2lgan?lg,故lgan?1?lg?2(lgan?lg)
44444a3?
113?lg3?lg?lg?0, 4441所以数列{lgan?lg}是以
4lga1?lglgan?lg2
为公比,首项为lg3的等比数列, 43n?1133n?1a3n?1?2n?1lg?lg()2,即lgn?lg()2,解得an?4()2,
44444432n?1数列?an?的通项公式为an?4().
4
21. 略解:(1)
f?x1??f?x2?2??11?a122x?x???????lnx1?lnx2? 12?2?x1x2?2 ?x1?x2122x?x??alnx1x2. ?12?2x1x22x?x4?x?x??x?x?f?12???12???aln12,
2?2??2?x1?x21212?x1?x2?22而?x1?x2?x?x?2xx???1212???, 24?2?22又?x1?x2??x1?x2?2x1x2?4x1x2,得
22x1?x24, ?x1x2x1?x2又x1x2?x1?x2x?x2x?x2,得lnx1x2?ln1,由于a?0,故alnx1x2?aln1. 222212x?x24x?x?x?x?2所以?x1?x2??1?alnx1x2??12???aln12.
2x1x22?2?x1?x2所以
f?x1??f?x2??x?x??f?12?.
2?2?(2)f'?x??2x?2?x1?x2?2aa''fx?fx?,故 ?x?x2??????1212222xxx1x2x1x22?x1?x2?2x12x2'' f?x1??f?x2??x1?x2?2??a?1, x1x22?x1?x2?a下面证明:2???1成立. 2x12x2x1x2
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库广东省广州市2013届高三考前训练题数学文试题(4)在线全文阅读。
相关推荐: