=?c?a??c?a? = c2?a2, 即b2?c2?a2,
222∴ a?b?c.
【证法12】(利用多列米定理证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有
AB?DC?AD?BC?AC?BD,
∵ AB = DC = c,AD = BC = a, AC = BD = b,
222222∴ AB?BC?AC,即 c?a?b,
DaAcbcbBaC222∴ a?b?c.
【证法13】(作直角三角形的内切圆证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.
∵ AE = AF,BF = BD,CD = CE,
30
∴ AC?BC?AB??AE?CE???BD?CD???AF?BF?
= CE?CD= r + r = 2r,
即 a?b?c?2r, ∴ a?b?2r?c.
22∴ ?a?b???2r?c?,
AbFrrOrEBaDCc2222a?b?2ab?4r?rc?c即 ,
??∵
S?ABC?1ab2,
∴ 2ab?4S?ABC, 又∵ S?ABC?S?AOB?S?BOC1111?a?b?c?rcr?ar?br?S?AOC = 222 = 2
1?2r?c?c?r22= = r?rc,
2?4r?rc??4S?ABC, ∴
24r?rc?2ab, ∴
??222222∴ a?b?2ab?2ab?c, ∴ a?b?c.
【证法14】(利用反证法证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
222222假设a?b?c,即假设 AC?BC?AB,则由
AB2?AB?AB=AB?AD?BD?=AB?AD?AB?BD
22可知 AC?AB?AD,或者 BC?AB?BD. 即 AD:AC≠AC:
AB,或者 BD:BC≠BC:AB.
31
在ΔADC和ΔACB中, ∵ ∠A = ∠A,
∴ 若 AD:AC≠AC:AB,则 ∠ADC≠∠ACB. 在ΔCDB和ΔACB中, ∵ ∠B = ∠B,
∴ 若BD:BC≠BC:AB,则 ∠CDB≠∠ACB. 又∵ ∠ACB = 90o,
∴ ∠ADC≠90o,∠CDB≠90o.
222这与作法CD⊥AB矛盾. 所以,AC?BC?AB的假设不能成
CaADcbB立.
222∴ a?b?c.
【证法15】(辛卜松证明) A a b
Bbabaa2DaAb1ab2acc2caD1ab2bb2ababC设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长
bcb1ab2aBc1aab2Cb32
是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几
222??a?b?a?b?2ab;把正方形个部分,则正方形ABCD的面积为
ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为
?a?b?21?4?ab?c222 =2ab?c.
222∴ a?b?2ab?2ab?c,
222∴ a?b?c.
【证法16】(陈杰证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图).
在EH = b上截取ED = a,连结DA、DC, 则 AD = c.
∵ EM = EH + HM = b + a , ED = a, ∴ DM = EM―ED = ?b?a?―a = b. 又∵ ∠CMD = 90o,CM = a,
∠AED = 90o, AE = b, ∴ RtΔAED ≌ RtΔDMC. ∴ ∠EAD = ∠MDC,DC = AD = c.
AbEcbc1bD2Ga6HB5F4a3cacC7aM33
∵ ∠ADE + ∠ADC+ ∠MDC =180o,
∠ADE + ∠MDC = ∠ADE + ∠EAD = 90o, ∴ ∠ADC = 90o.
∴ 作AB∥DC,CB∥DA,则ABCD是一个边长为c的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90o, ∴ ∠BAF=∠DAE.
连结FB,在ΔABF和ΔADE中,
∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE, ∴ ΔABF ≌ ΔADE.
∴ ∠AFB = ∠AED = 90o,BF = DE = a. ∴ 点B、F、G、H在一条直线上. 在RtΔABF和RtΔBCG中, ∵ AB = BC = c,BF = CG = a, ∴ RtΔABF ≌ RtΔBCG.
222c?S?S?S?Sb?S?S?Sa2345126∵ , , ?S3?S7,
S1?S5?S4?S6?S7,
22a?b?S3?S7?S1?S2?S6 ∴
=S2?S3?S1??S6?S7? =S2?S3?S4?S5
34
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库初中数学校本教材 - 图文(8)在线全文阅读。
相关推荐: