12a∵ ΔFAB的面积等于2,
ΔGAD的面积等于矩形ADLM 的面积的一半,
∴ 矩形ADLM的面积 =a2. 同理可证,矩形MLEB的面积 =b2.
∵ 正方形ADEB的面积
= 矩形ADLM的面积 + 矩形MLEB的面积
222222∴ c?a?b ,即 a?b?c.
【证法8】(利用相似三角形性质证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
在ΔADC和ΔACB中, ∵ ∠ADC = ∠ACB = 90o, ∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB.
AD∶AC = AC ∶AB, 即 AC2?AD?AB.
同理可证,ΔCDB ∽ ΔACB,从而有 BC2?BD?AB.
222222??AC?BC?AD?DB?AB?AB∴ ,即 a?b?c.
CaADcbB25
【证法9】(杨作玫证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.
∵ ∠BAD = 90o,∠PAC = 90o, ∴ ∠DAH = ∠BAC.
又∵ ∠DHA = 90o,∠BCA = 90o,
AD = AB = c, ∴ RtΔDHA ≌ RtΔBCA. ∴ DH = BC = a,AH = AC = b. 由作法可知, PBCA 是一个矩形, 所以 RtΔAPB ≌ RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a.
∵ RtΔDGT ≌ RtΔBCA , RtΔDHA ≌ RtΔBCA. ∴ RtΔDGT ≌ RtΔDHA .
∴ DH = DG = a,∠GDT = ∠HDA .
Gb9F8RTcQE7B3a2H4D1P5ca6cAbCc26
又∵ ∠DGT = 90o,∠DHF = 90o,
∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90o, ∴ DGFH是一个边长为a的正方形.
∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .
∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).
用数字表示面积的编号(如图),则以c为边长的正方形的面积为
c2?S1?S2?S3?S4?S5 ①
∵
S8?S3?S4?1?b??b?a????a??b?a??b2?1ab22, =
S5?S8?S9,
∴
S3?S4?b2?1ab?S82b2= ?S1?S8 . ②
把②代入①,得
c2?S1?S2?b2?S1?S8?S8?S9
2= b?S2?S9 = b2?a2.
222∴ a?b?c.
【证法10】(李锐证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,
27
使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).
∵ ∠TBE = ∠ABH = 90o, ∴ ∠TBH = ∠ABE.
HT83M4E5QbDB2C617RaAc又∵ ∠BTH = ∠BEA = 90o,
BT = BE = b, ∴ RtΔHBT ≌ RtΔABE. ∴ HT = AE = a. ∴ GH = GT―HT = b―a. 又∵ ∠GHF + ∠BHT = 90o,
GF∠DBC + ∠BHT = ∠TBH + ∠BHT = 90o, ∴ ∠GHF = ∠DBC. ∵ DB = EB―ED = b―a, ∠HGF = ∠BDC = 90o, ∴ RtΔHGF ≌ RtΔBDC. 即 S7?S2.
过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90o,可知 ∠ABE
= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌
RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 S8?S5.
28
由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE.
∵ ∠AQM + ∠FQM = 90o,∠BAE + ∠CAR = 90o,∠AQM = ∠BAE,
∴ ∠FQM = ∠CAR.
又∵ ∠QMF = ∠ARC = 90o,QM = AR = a, ∴ RtΔQMF ≌ RtΔARC. 即S4?S6.
222c?S?S?S?S?Sa?S?Sb?S3?S7?S8, 12345,16,∵
又∵ S7?S2,S8?S5,S4?S6,
22a?b?S1?S6?S3?S7?S8 ∴
=S1?S4?S3?S2?S5 =c,
222即 a?b?c.
2【证法11】(利用切割线定理证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90o,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得
AC?AE?AD
2CaEaBacbDA=?AB?BE??AB?BD?
29
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库初中数学校本教材 - 图文(7)在线全文阅读。
相关推荐: