1、 七边形的外角和是_________;十二边形的外角和是____________;三角形的外角和是_______。 2、 一个多边形的每一个外角都等于36°则这个多边形是_______边形。 3、 在每个内角都相等的多边形中,若一个外角是它相邻内角的三、当堂反馈
1、一个多边形的每一个外角都等于40°,则它的边数是__________;一个多边形的每一个内角都等于140°,则它的边数是___________。
2、如果四边形有一个角是直角,另外三个角的度数之比为2:3:4,?那么这三个内角的度数分别为________。
3、若一个多边形的内角和为1080°,则它的边数是___________。 4、当一个多边形的边数增加1时,它的内角和增加_________度。 3、 正十边形的一个外角为______. 4、_______边形的内角和与外角和相等.
5、已知一个多边形的内角和与外角和的差为1080°,则这个多边形是_____?边形. 6、若一个多边形的内角和与外角和的比为7:2,求这个多边形的边数。
四、课堂小结 通过本节课学习,你有什么收获?
五、课后反思
1,则这个多边形是______边形。 2第29课时:7.4 镶嵌导学案 班级 姓名
【学习目标】1.知道平面图形的镶嵌,弄清多边形镶嵌的条件.
2.通过探究多边形镶嵌的过程,发展学生的动手能力,合情推理能力,?合作能力等.
16
【学习重点】平面图形的镶嵌 【学习难点】多边形镶嵌的条件 【学习过程】 一、学前准备
1、多边形的内角和怎样计算?2、多边形的外角和是多少度?
二、探索思考 知识点一:镶嵌定义
用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺,又称平面图形的镶嵌
知识点二:一种正多边形的平面镶嵌
活动1.问题:分别剪一些边长相同的正三角形、正方形、正五边形、正六边形,如果用其中一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图案?
结论:
问题2:观察每个拼接点处有几个角?它们与正多边形的每个内角有什么关系?它们的和又有何特征?用简洁的语言总结出规律:
练习:
1.用多边形把平面的一部分完全覆盖的意思是指既不留下______,又不_____,?这与多边形的_______有关.
2.下列图形不能用来铺满地面的是( ).
A.钝角三角形 B.长方形 C.梯形 D.正五边形 3.下列说法正确的是( ).
A.只有正多边形可以平面镶嵌; B.最多能用两种正多边形进行平面镶嵌 C.一般的凸多边形也可以平面镶嵌; D.只有正五边形不可以平面镶嵌
4.我们已经知道,用一种正多边形铺地面时,只有______,_______,_______三种能铺满地面。 知识点三:两种正多边形的平面镶嵌
活动2.问题: 用刚才剪出的边长相同的正三角形、正方形、正五边形、正六边形中的两种正多边形镶嵌,哪两种正多边形能镶嵌成一个平面图案?
由此可得出结论: 练习:
1.有以下边长相等的三种图形:①正三角形;②正方形;③正八边形.选其中两种图形镶嵌成平面图形,请你写出两种不同的选法:_______或________.(?用序号表示图形)
2.当围绕一个顶点拼在一起的多边形中有_____个正三角形与______个正方形,这个组合能铺满平
17
台;当围绕一个顶点拼在一起的多边形中有______个正三角形与_______个正方形和______个正六边形,则这个组合也能平面镶嵌. 3.不能铺满地面的正多边形的组合是( ). A.正三角形和正五边形 B.正方形和正八边形
C.正三角形和正十二边形 D.正三角形,正方形和正六边形 知识点四:任意相同三角形或四边形的平面镶嵌
活动3.问题:任意剪出一些形状、大小相同的三角形纸板,拼拼看,它们能否镶嵌成平面图案. 任意剪出一些形状、大小相同的四边形纸板,拼拼看,它们能否镶嵌成平面图案. 总结:用一些形状、大小相同的多边形,它们能够镶嵌成平面图案的条件是什么? 结论: . 三、当堂反馈
1.用多边形或其组合可以拼成许多漂亮的密铺图案.?下面的图案是现实生活中大量存在的密铺图案的一部分.欣赏这些图案,你能发现哪些多边形或其组合可以密铺?
2.同学们经常见到如图所示那样的地面,它们分别是全用正方形或全用正六边形材料铺成的,这样形状的材料能铺成平整、无空隙的地面.现在,问: (1)像上面那样铺地面,能否全用正五边形的材料? (2)你能不能另外想出一个用一种多边形(不一定是正多边形)
?的材料铺地的方案?把你想到的方案画成草图.
(3)请你再画一个用两种不同的正多边形材料铺地的草图.
四、课堂小结
五、课后反思
第30课时: 三角形复习题导学案 班级 姓名
【学习目标】通过做练习进一步巩固三角形的基本知识点 【学习重点】三角形的边角关系,特殊的三角形和多边形
18
【学习难点】所学知识的综合引用
1.如图1所示,共有_____个三角形,其中以AB为边的三角形有以∠C?为一个内角的三角形有______.
2.以下面各组线段为边,能组成三角形的是( ). A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm
3.D是△ABC内一点,那么,在下列结论中错误的是( ).
A.BD+CD>BC B.∠BDC>∠A C.BD>CD D.AB+AC>BD+CD 4.等腰三角形的周长为20cm,一边长为6cm,则底边长为______. 5.下列图形中有稳定性的是( )
_____,
图1
A.正方形 B.长方形 C.直角三角形 D.平行四边形 6.下列四组图形中,BE是△ABC的高线的图是( ) E
C A
A C E
B
A C C
A C D
A
B B B E B E 7.下列说法中正确的是 ( )
A.三角形的内角中至少有两个锐角 B.三角形的内角中至少有两个钝角 C.三角形的内角中至少有一个直角 D.三角形的内角中至少有一个钝角 8.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______. 9.如图2所示,∠α=_______. 图2
10.一个三角形的两个内角分别是55°和65°,?这个三角形的外角不可能是( ). A.115° B.120° C.125° D.130°
11.三角形的三个外角中,钝角的个数最多有______个,锐角最多_____个. 12.在△ABC中,∠A =60°,∠C =2∠B,则∠C =__________.
13.正多边形的一个内角等于144°,则该多边形是正( )边形. A.8 B.9 C.10 D.11
14.若n边形的内角和是1260°,则边数n为( ).
A.8 B.9 C.10 D.11
15.某人到瓷砖店去购买一种多边形形状的瓷砖,用来铺设无缝地板,?他购买的瓷砖形状不可以是( ). A.正三角形 B.矩形(长方形) C.正八边形 D.正六边形
16.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.
17.如图:(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE.
(2)若∠A=∠B,请完成下面的证明:
19
已知:△ABC中,∠A=∠B,CE是外角∠BCD的平分线.
求证:CE∥AB.
18.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.
19.一个零件的形状如图,按规定∠A= 90°,∠ABC和∠ACB,应分别是32°和21°,检验工人量得∠BDC = 148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由
CDB方米售价230元,AC=12m,BD=15m,购买这种草皮至少需要多少元?
A20.如图所示,有一块三角形ABC空地,要在这块空地上种植草皮来美化环境,已知这种草皮每平
D15m
21.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE. (2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.
A12mBC22.在△ABC中,已知∠ABC = 66°∠ACB = 54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠BHC的度数。 课后反思
第31课时:三角形单元测试导学案 班级 姓名
一、选择题(3分×8=24分)
1.一个三角形的三个内角中 ( ) A 、至少有一个钝角 B 、至少有一个直角
20
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库七年级数学下册 - 第七章《三角形》导学案人教新课标版(4)在线全文阅读。
相关推荐: