再例如
1 Cj1?1m1?1, m11Cjm1, m1m2, j?j1?1, m2?1.
?j,1??j,1?1??j1?1?j1?1?!?j1?1?j1?1?!?j1?1?j1?1?!?j1?1?m1?1?!?j1?1?m1?1?!?2j1?3??2????j?1?j?1?1!j?m!j?m!2!0!????????111111?????1?kk?j1?1?1?m1?k?!?j1?m1?k?!k!?j1?1?m1?1?k?!?j1?1?j1?1?k?!?j1?1?m1?1?k?!1??2j1?!2!0!?j1?m1?2?!?j1?m1?!?2j1?3??2????2j?3!j?m!j?m!2!0!????????11111????j1?m1?2?!?j1?m1?! ???0!2!?j1?m1?2?!?j1?m1?2?!1
?j1?m1?!?j1?m1?2?!??2!0!?j1?m1?!?j1?m1?!????j1?m1?1?!?j1?m1?1?!?1!1!?j1?m1?1?!?j1?m1?1?!?(j?m1?1)(j1?m1?2)?2??1??(2j?1)(2j?2)?11?1?1? ??j1?m1??j1?m1?1???j1?m1?1??j1?m1???j1?m1?2??j1?m1?1??2?2?1
??j1?m??j1?m?1??2??? ????2j?12j?211?? C-G系数有下列性质
Cjm1, 2m1m2???1??jj?j1?j2?jCj?1m2, ?m1?m2???1?1?jj?j1?j2?jCjm2, 1 m2m1?jj? 例如:
???1?j1?m1?2j?1?2?j1j???Cj2?m2, m1?m2j?1?2? (30)
Cj?1m2, ?m1?m2?C0???1?k(jj)k?j2?m2?j?j2?m1?k?!?j1?m1?k?!
k!?j?m?k?!?j?j1?j2?k?!?j1?j2?m?k?! (31)
其中:
1
??j?j1?j2?!?j?j1?j2?!?j1?j2?j?!?j?m?!?j?m?!?2j?1??2C0???j?j1?j2?1?!?j1?m1?!?j1?m1?!?j2?m2?!?j2?m2?!???
与求和无关,且在m, m1, m2变号情况下,其值不变. 令j?j1?j2?k?k?,则k?j?j1?j2?k?, (31)式求和项变为:
j?j1?2j2?m2?k? ???1?k??j?j1??j1?m1?k??!?j?j2?m1?k??!
j2?k??!k?!?j1?j2?m?k??!?j?m?k??!21
而
??1?j?j?2j?m?k122????1?j?j1?j2?4j2?j2?m2?k????1?j1?j2?j??1?k??j2?m2
这样
Cj?1m2, ?m1?m2???1?(jj)j1?j2?jC0???1?kk?j2?m2?
?j?j2?m1?k?!?j1?m1?k?!
k!?j?m?k?!?j?j1?j2?k?!?j1?j2?m?k?!121212 =??1?j?j?jC?jmj,jm?m. 其它性质亦可用同样方法予以证明.
例1:现在我们利用两波函数的耦合公式
?(r1r2)?jm?m1m22Cm1m12, ?jm?(jj)(r1)?j1m1(r2)?j2m2?m1m2Cjm1, 2m1m2??jj?j1m1(r1)?j2m2(r2) (32)
及表1所给的C-G函数来讨论两电子的合成自旋波函数,为此采用惯用的符号 ??1????0????,
????1?? ???1??2??0? (33)
1??2?分别代表自旋向上??Sz?j,m与自旋向下??Sz???的自旋波函数,用
代表合成的自旋波函数. 由于电子的自旋为j1?j2?12,则合成的总自旋为j?1, 0. 当j?1考虑到m?m1?m2,则由表1可得
时,m?1, 0, ?1. 当j?0时,mC?11????22?jm, m1m2?0.
系数,如表3示.
22
表3 j C?11????22?jm, m1m2函数
m2??1m2?12 ?2?????1121 1 ?3??m1?22????1??m1??22??? ?3??m1?22????1??m1?22????2?????1 0 ?2????? ?2????? 这样由(32)、(33)两式及上表可得:
?1,1???1???2??1????1???2????1???2?? ?1,0?2??1,?1???1???2??0,0?12???1???2????1???2??
以上合成波函数在量子力学中我们早就熟悉.
23
§ 5.9 张量算符
1.算符的变换
我们先看一下坐标转动时,算符的变换规则.
??r?,作用在波函数??r?后可得到另一波函数??r?,即 设有算符F??r???r????r?F
(1)
??R?,用P??R?作用在上式两边得: 设在坐标转动R下的算符为P??R?F??r???r??P??R???r? P求:
??R?F??r?P??R?P??R???r??P??R???r? P?1令
???r??P??R?F??r?P??1?R? F
(2) 且注意到:
??R???r???R?1rP??R???r???R?1rP??
??
则上式变为:
???r??R?1r??R?1rF????
(3)
又由(1)式知:
???r??R?1r??R?1rF????
(4)
24
因此: (5) 2. 矢量算符
??i?1,2,3?,在坐标转动变换下,它按如下?有三个分量F 如果算符Fi???r??P??R?F??r?P??1?R??F?R?1rF??
规则变换 (6) 或 (7)
?为矢量算符. 则该F???P??R?F?P??1?R??R?1F?F
???P??R?F?P??1?R??Fii?Rj?1ij??Fj?Rjji?Fj?i,j?1,2,3?
例1.算符?矢量算符.
???ei?xi是矢量算符(i?1,2,3)分别对应于x,y,z)是
?因为此时Fir??Rr???xi,在坐标经R变换后,
或
xi???Rjijxj
(8) 而
(9)
又由算符变换性质(5)知
25
??xi??j?x?j?(8)式?xi?x?j??jRji??x?j??r???Fi?Rjji??r?? Fj
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库角动量算符的本征值方程(6)在线全文阅读。
相关推荐: