4.B
得 2(a+b+c)=p(a+b+c).
∴有p=2或a+b+c=0.
当p=2时,y=2x+2.则直线通过第一、二、三象限. 当a+b+c=0时,不妨取a+b=-c,于是
∴y=-x-1,则直线通过第二、三、四象限.
综合上述两种情况,直线一定通过第二、三象限,故选B. 5.C
在数轴上画出这个不等式组解集的可能区间,如下图
∴a=1,2,3?9,共9个.
∴b=3×8+1,3×8+2,3×8+3,?, 3×8+8.共8个.
∵9×8=72(个),故选C.
二、填空题
6.解 如图,过A作AG⊥BD于G,
∵“等腰三角底边上的任意一点到两腰距离的和等于腰上的高”. ∴PE+PF=AG. ∵AD=12,AB=5, ∴BD=13.
7.解 如图,直线y=-2x+3与抛物线y=x2的交点坐标为A(1,1),B(-3,9),作AA1,BB1分别垂直于x轴,垂足为A1,B1,
∴S△OAB=S梯形AA1B1B-S△AA1O-S△BB1O
8.解 如图,当圆环为3个时,链长为3a+
故a可取1,3或5.
10.解 如图,设经过t小时后,A船、B船分别航行到A1,B1,设AA1=x,于是BB1=2x.
∴A1C=|10-x|,B1C=|10-2x|.
三、解答题
11.解法1 过C作CD⊥CE与EF的延长线交于D,
∵∠ABE+∠AEB=90°, ∠CED+∠AEB=90°, ∴∠ABE=∠CED.
于是Rt△ABE∽△CED,
又∠ECF=∠DCF=45°,所以,CF是∠DCE的平分线,点F到CE和CD的距离相等.
解法2 作FH⊥CE于H,设FH=h.
∵∠ABE+∠AEB=90°, ∠FEH+∠AEB=90°, ∴∠ABE=∠FEH.
∴Rt△EHF∽Rt△BAE.
即EH=2h,
又∵HC=FH,
12.解(1)因为抛物线与x轴只有一个交点,所以一元二次方程
(2)由(1)知,a2=a+1,反复利用此式可得 a4=(a+1)2=a2+2a+1=3a+2,
a8=(3a+2)2=9a2+12a+4=21a+13, a16=(21a+13)2=441a2+546a+169 =987a+610.
a18=(987a+610)(a+1)=987a2+1597a+610=2584a+1597.
∵a2-a-1=0,∴64a2-64a-65=-1, 即 (8a+5)(8a-13)=-1.
∴a18+323a-6=2584a+1597+323(-8a+13)=5796.
13.解(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是
W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10) =-800x+17200.
∴5≤x≤9.
∴W=-800x+17200(5≤x≤9,x是整数)
由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;当x=5时,W取到最大值13200元.
(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是
W=200x+800(10-x)+300y+700(10-y)+400(19-x-y)+500(x+y-10) =-500x-300y-17200
∴W=-500x-300y+17200,
W=-200x-300(x+y)+17200
≥-200×10-300×18+17200=9800.
当x=10,y=8时,W=9800.所以,W的最小值为9800. 又W=-200x-300(x+y)+17200
≤-200×0-300×10+17200=14200.
当x=0,y=10时,W=14200,所以,W的最大值为14200.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库历届全国初中数学联赛试题15套(7)在线全文阅读。
相关推荐: