周长为6,面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明共有几个?
三、(本题满分20分)
某次数学竞赛共有15个题.下表是对于做对n(n=0,1,2,??,15)个题的人数的一个统计.
n 0 1 2 3 ?? 12 13 14 15
做对n个题的人数 7 8 10 21 ?? 15 6 3 1
如果又知其中做对4个题和4个题以上的学生每人平均做对6个题,做对10个题和10个题以下的学生每人平均做对4个题.问这个表至少统计了多少人?
1994年全国初中数学联赛参考答案
第一试答案 一、选择题;
小题号 1 2 3 4 5 6 7 8 答案 A D B B D C B C
二、填空题:
第二试提示及答案.
一、连结OA,OC,OP,OQ.证明△OCP≌△OAQ,于是 ∠CPO=∠AQO,所以O,A,P,Q四点共圆.
三、这个表至少统计了200人.
995年全国初中数学联赛试题
第一试
一、选择题
1.已知a=355,b=444,c=533,则有[ ]
A.a<b<c B.c<b<a C.c<a<b D.a<c<b
A.1 B.2 C.3 D.4
3.如果方程(x-1)(x2-2x-m)=0的三根可以作为一个三角形的三边之长,那么实数m的取值范围是
4.如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为 [ ]
A.62π B.63π C.64π D.65π
5.设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S△CAB-S△DAB|,N=2S△OAB,则 [ ]
A.M>N B.M=N C.M<N D.M、N的大小关系不确定 6.设实数a、b满足不等式||a|-(a+b)|<|a-|a+b||,则[ ]
A.a>0且b>0 B.a<0且b>0 C.a>0且b<0 D.a<0且b<0 二、填空题
1.在12,22,32?,952这95个数中,十位数字为奇数的数共有____个。
4.以线段AB为直径作一个半圆,圆心为O,C是半圆周上的点,且OC2=AC·BC,则∠CAB=______.
第二试
一、已知∠ACE=∠CDE=90°,点B在CE上,CA=CB=CD,经A、
C、D三点的圆交AB于F(如图)求证F为△CDE的内心。
二、在坐标平面上,纵坐标与横坐标都是整数
理由。
三、试证:每个大于6的自然数n,都可以表示为两个大于1且互质的自然数之和。
1995年全国初中数学联赛参考答案
第一试
一、选择题
1.讲解:这类指数幂的比较大小问题,通常是化为同底然后比较指数,或化为同指数然后比较底数,本题是化为同指数,有
c=(53)11=12511 <24311=(35)11=a
<25611=(44)11=b。选C。
利用lg2=0.3010,lg3=0.4771计算lga、lgb、lgc也可以,但没有优越性。
2.讲解:这类方程是熟知的。先由第二个方程确定z=1,进而可求出两个解:(2,21,1)、(20,3,1).也可以不解方程组
直接判断:因为x≠y(否则不是正整数),故方程组①或无解或有两个解,对照选择支,选B。
3.讲解:显然,方程的一个根为1,另两根之和为x1+x2=2>1。三根能作为一个三角形的三边,须且只须|x1-x2|<1又
有0≤4-4m<1.
4.讲解:四个选择支表明,圆的周长存在且唯一,从而直径也存在
且唯一.又由
AB2+AD2 =252+602
=52×(52+122) =52×132
=(32+42)×132 =392+522 =BC2+CD2
故可取BD=65为直径,得周长为65π,选D.
5.讲解:此题的得分率最高,但并不表明此题最容易,因为有些考生的理由是错误的.比如有的考生取AB为直径,则M=N=0,于是就选
B.其实,这只能排除A、C,不能排除D.
不失一般性,设CE≥ED,在CE上取CF=ED,则有OF=OE,且S△
ACE-S△ADE=S△AEF=2S△AOE.同理,S△BCE-S△BDE=2S△BOE.相加,得
S△ABC-S△DAB=2S△OAB,即M=N.选B.
若过C、D、O分别作AB的垂线(图3),CE⊥AB、DF⊥AB、OL⊥AB,垂足分别为E、F、L.连CF、DE,可得梯形CEDF.又由垂径分弦定理,知L是EF的中点.根据课本上做过的一道作业:梯形对角线中点的连线平行底边,并且等于两底差的一半,有
|CE-DF|=2OL.
即M=N.选B.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库历届全国初中数学联赛试题15套(3)在线全文阅读。
相关推荐: