fn?x0??f????x0??x?x0??????fn?x0??x?x0?ÒòΪ
n?2/?n?2?!?o?x?x0??n?2?
f?(x0)?f??(x0)?ËùÒÔ
?f(n?1)(x0)?0
f??(x)?fn(x0)(x?x0)n?2/(n?2)!?o((x?x0)n?2)
ÓàÏîͬÑùÊÇ(x?x0)n?2µÄ¸ß½×ÎÞÇîС¡£
Òò´Ë£º
??µ±nÎªÆæÊýʱ,(n?2)ÈÔÎªÆæÊý£¬ÔÚU?(x0)ºÍU?(x0)ÉÏ
fn(x0)(x?x0)n?2/(n?2)!·ûºÅÏà·´£¬¼´f??(x)µÄ·ûºÅÏà·´£¬ËùÒÔ(x0,f(x0))ΪÇúÏß
y=f(x)µÄ¹Õµã£»
??µ±nΪżÊýʱ£¬(n?2)ÈÔΪżÊý£¬Ôòf??(x)ÔÚU?(x0)ºÍU?(x0)ÉϵķûºÅÏàͬ£¬
ËùÒÔ(x0,f(x0))²»ÊÇÇúÏßy=f(x)µÄ¹Õµã¡£
Àý15£ºÅжϣ¨0£¬4£©ÊÇ·ñÊÇf?x??ex?e?x?2cosxµÄ¹Õµã£¿
½â£º ?¡ä(x)=ex-e-x-2sinx, ?¡ä(0)=0
?¡ä¡ä(x)=ex-e-x-2cosx,?¡ä¡ä(0)=0
?¡ä¡ä¡ä(x)=ex-e-x+2sinx, ?¡ä¡ä¡ä(0)=0
?(4)(x)=ex-e-x-2cosx, ?(4)(0)=4¡Ù0
ÒòΪn=4£¬ËùÒÔ£¨0£¬4£©²»ÊÇf?x??ex?e?x?2cosxµÄ¹Õµã¡£
4.7Ó¦ÓÃÌ©ÀÕ¹«Ê½ÅжÏÁ²É¢ÐÔ
Á²É¢ÐÔµÄѧϰ×÷ΪÊýѧ·ÖÎöÖеĻù´¡ÄÚÈÝ£¬Îª½ñºóÊýѧ¿Î³ÌµÄѧϰµì¶¨ÁËÖØÒªµÄÀíÂÛ»ù´¡¡£Ì©ÀÕ¹«Ê½×÷ΪÊýѧ·ÖÎöѧϰµÄÖØÒª¹¤¾ß£¬ÔÚÁ²É¢ÐÔµÄÅжÏÖÐÓÐ×Å
21
ÖØÒª×÷Óã¬ÔÚ´ËÌÖÂÛÀûÓÃÌ©ÀÕ¹«Ê½Åжϼ¶ÊýµÄÁ²É¢ÐÔºÍÅжϹãÒå»ý·ÖµÄÁ²É¢ÐÔ¡£ Åжϼ¶ÊýµÄÁ²É¢ÐÔ
xÀý15:Åжϼ¶Êý?(n?11n?lnn?1)µÄÁ²É¢ÐÔ¡£ n·ÖÎö£ºÈôÖ±½Ó¸ù¾ÝͨÏîÈ¥Åжϸü¶ÊýÊÇÕýÏî¼¶Êý»¹ÊÇ·ÇÕýÏî¼¶Êý»á±È½ÏÀ§ÄÑ£¬Òò¶øÒ²¾ÍÎÞ·¨Ç¡µ±µØÑ¡ÔñÅÐÁ²·½·¨¡£
×¢Òâµ½
lnn?11?ln(1?) nnÈô½«ÆäÌ©ÀÕÕ¹¿ªÎªÐÔ¸üÈÝÒ×½øÐС£
½â£º
11µÄÃݵÄÐÎʽ£¬¿ª¶þ´Î·½ºóÇ¡ºÃÓë ºôÓ¦£¬Ê¹µÃÅжÏÁ²É¢nn? lnn?1111111?ln(1?)??2?3?4??? nnn2nn3n4n ? lnn?11 ?nn? un?1n?lnn?1?0 nËùÒԸü¶ÊýÊÇÕýÏî¼¶Êý¡£
?lnn?1?n111111111?2?3??(3)??2?3?(?3)2?n2nnn3nn4nn2n21n?12n32
?un?
1n?ln1111n?1?(?3)= 3 <
nnn2n22n2? ?n?1?12n32¾ßÓÐÊÕÁ²ÐÔ
ËùÒÔÓÉÕýÏî¼¶Êý±È½ÏÅб𷨿ɵÃÔ¼¶ÊýÊÕÁ²¡£ ÅжϹãÒå»ý·ÖµÄÁ²É¢ÐÔ
22
ÔÚÅж϶¨»ý·Ö???af(x)dxµÄÁ²É¢ÐÔʱ, ͨ³£Ñ¡Óö¨»ý·Ö?????a1dx(p?0)½øxpÐбȽϺóͨ¹ýÑо¿ÎÞÇîСÁ¿f(x)(x???)µÄ½×À´ÓÐЧµØÑ¡?a´Ó¶ø¼òµ¥µØÅж¨???a1dxÖеÄpÖµ£¬pxf(x)dxµÄÁ²É¢ÐÔ£¨×¢Òâµ½£ºÈç¹û???af(x)dxµÃÊÕÁ²£¬Ôò
???af(x)dxµÃÊÕÁ²£©¡£
Àý16:Åж¨¹ãÒå»ý·Ö?(x?3?x?3?2x)dxµÄÁ²É¢ÐÔ¡£
6??½â£ºÓÉ
(1?x)a?1?ax?µÃ
a(a?1)2x??(x2) 2!f(x)??x?3?x?3?2x 33x(1?)2?(1?)2?2
xx113191131911 ?x(1????2?o(2))?(1????2?o(2))?2
2x8xx2x8xx911?3??(3) 42xx2=?Òò´Ë£¬limx?????1f(x)91(x???)dxf(x)?0£¬¼´ÊǵÄ3/2½×£¬ÒòΪ?3/2?61xx4x3/2ÊÕÁ²£¬ËùÒÔ???6f(x)dxÊÕÁ²£¬´Ó¶ø?(x?3?x?3?2x)dxÊÕÁ²¡£
6??4.8ÀûÓÃÌ©ÀÕ¹«Ê½½â¾¼ÃѧÎÊÌâ Ëæ×ÅÎÒ¹ú¾¼ÃµÄ¸ßËÙ·¢Õ¹£¬×÷ΪÊýѧרҵµÄѧÉú£¬½«Êýѧ֪ʶӦÓÃÔÚ¾¼ÃѧÖУ¬²¢Äܹ»½â¾ö»ù±¾µÄ¾¼ÃѧÎÊÌâÔò³ÉÎÒÃÇÈÕ³£Éú»îÖÐÒ»Ïî±ØÒªµÄÄÜÁ¦¡£¾¼ÃѧÖÐÓ¦ÓÃ×î¶àµÄÊýѧ֪ʶÊǶ¨»ý·ÖµÄÓ¦Óã¬ÔÚÕâÀォÒÔ¶¨»ý·ÖΪ»ù´¡£¬ÀûÓÃÌ©ÀÕ¹«Ê½È¥½â¾ö¾¼ÃѧÎÊÌâ¡£
Àý17£ºÒÑ֪ij³§É̵ijɱ¾º¯Êý±í´ïʽΪ£ºSTC=(1+x)3£¬¼Ù¶¨Ã¿¼þÉÌÆ·µÄ×îÖÕÏúÊ۵ļ۸ñΪ66Ôª¡£ÇóÔÚеļ۸ñÏ£¬³§É̵ÄÓ¯ÀûÇé¿ö£¬Èô·¢Éú¿÷Ëð£¬Ôò×îСµÄ¿÷Ëð½ð¶îÊǶàÉÙ¡£
½â£º¸ù¾ÝÌâÒ⣬ÓÉÓÚÊܵ½ÍâÀ´Êг¡µÄ³å»÷£¬¸Ã³§É̵Ĺ©Çó·¢Éú²¨¶¯£¬³§É̾ö¶¨ÏÂ
23
µ÷¼Û¸ñ£¬Èô½«½µ¼Ûºó¼Û¸ñ¶¨Îª27Ôª¡£´Ëʱ²»ÂÛÀûÈó×î´ó»¹ÊÇ¿÷Ëð×îС£¬¾ùºâÌõ¼þ¶¼ÊÇP=MC£¬ÈôÒª¼ÆËãÀûÈóµÄÕý¸ºÐèÒª¸ù¾ÝP=MCËù¾ö¶¨µÄ¾ùºâ²úÁ¿À´¼ÆË㣬
¸ù¾Ýº¯ÊýSTC=(1+x)3£¬Éèf(x)=(1+x)3Ó¦ÓÃÌ©ÀÕ¹«Ê½µÃÓУº
(1+x)m=1+mx+m(m-1)2x?? 2!µÃ STC=1+3x+3x2+x3 ÒòΪ P=MC£¬¼´27=3x2+6x+3 ËùÒÔx=4,x=1
1¡ä¡äf(x0)(1-x0)2 £¨1£© 21¡ä¡ä¡ä=f(x+)f(x-)(xf0x(-2)0 (x f(0) )£¨2£© 000+)2ÒòΪ f(1)=f(x0)+f¡ä(x0)(1-x0)+d2TCd2TC=6¡Á4+6=30>0£¬=6¡Á1+6=12>0 ËùÒÔ 22dxdx¹Ê x=4,x=1ÊÇÀûÈó×î´ó»òÕß×îСµÄ²úÁ¿¡£ ÀûÈó ¦Ð=TR-TC=PQ-(1+x)3=27¡Á4-(1+4)3=-17 ¦Ð=TR-TC=PQ-(1+x)3=27¡Á1-(1+1)3=19
Ôò£ºµ±ÉÌÆ·µÄ¼Û¸ñΪ27Ԫʱ¡£Èô³§É̵ÄÉÌÆ·²úÁ¿Îª1ʱ£¬»ñµÃ×î´óÓ¯Àû£¬
ÀûÈóΪ19Ôª¡£Èô³§É̵ÄÉÌÆ·²úÁ¿Îª4ʱ£¬»á²úÉú¿÷Ëð£¬×îС¿÷ËðΪ17Ôª¡£
5½áÊøÓ
Ì©ÀÕ¹«Ê½×÷ΪÊýѧ·ÖÎöÖзdz£ÖØÒªµÄÄÚÈÝ£¬ÒѾ³ÉΪ¸÷¸öÁìÓòµÄÊýѧÑо¿Öв»¿É»òȱµÄ¹¤¾ß¡£±¾ÎĽéÉÜÁËÌ©ÀÕ¹«Ê½µÄÆðÔ´ÒÔ¼°Ñо¿µÄ±³¾°ÒâÒ壬Ïêϸ²ûÊöÁËÌ©ÀÕ¹«Ê½µÄÐÔÖʲ¢×ö³öÁËÒ»¶¨µÄÍÆ¹ã¡£½ø¶øÌ½ÌÖÁËÌ©ÀÕ¹«Ê½ÔÚÊýѧÖеĹ㷺ӦÓã¬×îºóÀý¾ÙÁËÌ©ÀÕ¹«Ê½ÔÚ¾¼ÃѧÖеļòµ¥Ó¦Ó㬳ä·Ö˵Ã÷ÁËÌ©ÀÕ¹«Ê½Ó¦ÓõÄÁìÓòÖ®¹ãÒÔ¼°ÔÚÊýѧÖеÄÖØÒªµØÎ»¡£ÔÚÎÒÃǽñºóÉîÈëÑо¿ÖУ¬Òª³ä·ÖÈÏʶµ½Ì©ÀÕ¹«Ê½Ìá³öµÄ˼ÏëÄÚº£¬ÅªÇåÌ©ÀÕµÄ˼ά·½Ê½£¬Õâ¶ÔÅàÎÒÃÇ˼άÄÜÁ¦Óë¶ÀÁ¢¹¤×÷µÄÄÜÁ¦£¬´Ó¸ù±¾ÉÏÇ¿»¯ÒÑѧ֪ʶ£¬Ìá¸ßѧÉúµÄËØÖÊÊÇÊ®·Ö±ØÒªµÄ¡£²»¿É·ñÈϵÄÊÇÌ©ÀÕ¹«Ê½ÔÚÓ¦Ó÷½Ãæ´æÔÚһЩÎÊÌâºÍ©¶´£¬ÎÒÃÇÖ»ÓÐÊìÁ·ÕÆÎÕ»ù´¡ÖªÊ¶£¬²ÅÄÜÔÚ´Ë»ù´¡ÉϼÓǿѵÁ·£¬×ܽá¾ÑéºÍǰÈ˵ÄÑо¿³É¹û£¬Éî¿ÌÁì»á²»Í¬Ê±´úÊýѧ´óʦÔÚÌ©ÀÕ¹«Ê½ÕâÒ»ÎÊÌâÖеÄ˼ÏëÄÚº£¬Õùȡ̽Ë÷³öеĽâÌâ·½·¨ºÍ;¾¶£¬ÒÔ±ãΪÎÒÃǽñºó¸üºÃµÄ×êÑкÍÑо¿£¬½«Ì©ÀÕ¹«Ê½Ó¦ÓÃÓÚ¸ü¶àµÄʵ¼ÊÎÊÌâÖУ¬Ê¹Ì©ÀÕ¹«Ê½ÕæÕý³ÉΪ±»¹ã·ºÈϿɵÄÀíÂÛ¹¤¾ß¡£
24
6²Î¿¼ÎÄÏ×£º
[1] »ª¶«Ê¦·¶´óѧÊýѧϵ£¬Êýѧ·ÖÎöÉϲáµÚÈý°æ[M].±±¾©£º¸ßµÈ½ÌÓý³ö°æÉ磬2001 .119-156. [2] Å·Ñô¹âÖÐ. Êýѧ·ÖÎö[M]. µÚÈý°æ. ±±¾©:¸ßµÈ½ÌÓý³ö°æÉç, 2008.184-227. [3] ³ÂÊØÐÅ. Êýѧ·ÖÎöÑ¡½²[M]. µÚÒ»°æ. ±±¾©:»úе¹¤Òµ³ö°æÉç, 2009.328-347.
[4] Íõº£Ñà. ´øÆ¤ÑÇŵÓàÏîµÄÌ©ÀÕ¹«Ê½¼°Èô¸ÉÓ¦ÓÃ. ¿Æ¼¼ÐÅÏ¢(¿ÆÑ§¡¤½ÌÑÐ).2007, (35): 134.
[5] À׿ªºé. ÀûÓÃÌ©ÀÕ¹«Ê½Àí½âµÈ¼ÛÎÞÇîÐ¡Ìæ»»µÄʵÖÊ. Ò˱öѧԺѧ±¨.2011, 11(6): 112-114.
[6] ÕÅÔ¾,Ëνà,¶¿¡. Ì©ÀÕ¹«Ê½µÄÓ¦ÓÃ. Öйú½ÌÓý·¢Õ¹Ñо¿ÔÓÖ¾.2008, 5(11): 37-39. [7] ³Â¼ÍÐÞ,Ðì»Ýƽ.Êýѧ·ÖÎöϰÌâÈ«½âÖ¸ÄÏ[M].¸ßµÈ½ÌÓý³ö°æÉç,2005.
[8] ÕÔÖÐ,ÕÅÐãÈ«. Ì©ÀÕ¹«Ê½Ôڸ߽׵¼ÊýºÍ¸ß½×Æ«µ¼Êý·½ÃæµÄÓ¦ÓÃ. ÌìÖÐѧ¿¯.2011, 26(2): 81-82.
[9] Íô¼ó±ò,»ÆÈð·¼. Ì©ÀÕ¹«Ê½ÔÚ½â¾öµäÐÍÎÊÌâ·½ÃæµÄÓ¦ÓÃÑо¿. ½¹×÷ʦ·¶¸ßµÈר¿ÆÑ§Ð£Ñ§
±¨.2011, 27(2): 76-77.
[10] ¿×ɺɺ.Ì©ÀÕ¹«Ê½ÔÚÊýÖµ¼ÆËãÖеÄÓ¦ÓÃ. ¼ÃÄþѧԺѧ±¨.2011, 32(3): 70. [11] ÍõÐÂ,ÈÎÅåÎÄ. Ì©ÀÕÕ¹¿ªÊ½²»Í¬ÐÎʽµÄ¸÷ÖÖÓ¦ÓÃ. ¸ßµÈº¯ÊÚѧ±¨.2009, 22(1): 32-24. [12] ÀîöÎ. ̽ÌÖÌ©ÀÕ¹«Ê½ÔڸߵÈÊýѧÖеÄÓ¦ÓÃ. Öйú¿Æ¼¼×ݺá.2009, (11): 116. [13] ÅáÀò. ̽ÌÖÌ©ÀÕ¹«Ê½ÔڸߵÈÊýѧÖеÄÓ¦ÓÃ. Öйúµç×ÓÉÌÎñ.2010, (6): 261.
[14] ÐܲÓ. ÌÖÂÛÌ©ÀÕ¹«Ê½µÄ×ÛºÏÓ¦ÓÃ. ±±¾©µçÁ¦¸ßµÈר¿ÆÑ§Ð£Ñ§±¨.2009, (11): 103-104. [15] ºÎÇàÁú,ÕÅÔ¾. ΢·ÖÖÐÖµ¶¨ÀíºÍÌ©ÀÕ¹«Ê½µÄһЩӦÓÃ. Öйú½ÌÓý·¢Õ¹Ñо¿ÔÓÖ¾.2010, 7(6): 20-22.
25
°Ù¶ÈËÑË÷¡°77cn¡±»ò¡°Ãâ·Ñ·¶ÎÄÍø¡±¼´¿ÉÕÒµ½±¾Õ¾Ãâ·ÑÔĶÁÈ«²¿·¶ÎÄ¡£Êղر¾Õ¾·½±ãÏ´ÎÔĶÁ£¬Ãâ·Ñ·¶ÎÄÍø£¬Ìṩ¾µäС˵×ÛºÏÎÄ¿âÌ©ÀÕ¹«Ê½¼°ÆäÓ¦ÓÃ(5)ÔÚÏßÈ«ÎÄÔĶÁ¡£
Ïà¹ØÍÆ¼ö£º