标题 1.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性. 2.探索并掌握三角形中位线的性质. 3.了解全等三角形的概念,探索并掌握两个三角形全等的条件. 4.了解等腰三角形的有关概念,探索并掌握等腰三角形的性质和一个三角形是等腰三角形教学目标 的条件;了解等边三角形的概念并探索其性质. 5.了解直角三角形的概念,探索并掌握直角三角形的性质和一个三角形是直角三角形的条件. 6.体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形. 1重点:三角形的相似及全等及解直角三角形的基础知识 重点、难点 2 难点:综合应用这些知识解决三角形的应用问题 教 学 内 容 考点精析 考点一、三角形的概念及其性质 1.三角形的概念 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三角形的分类 (1)按边分类: (2)按角分类:
3.三角形的内角和外角 (1)三角形的内角和等于180°. (2)三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角. 4.三角形三边之间的关系 三角形任意两边之和大于第三边,任意两边之差小于第三边. 5.三角形内角与对边对应关系 在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边. 6.三角形具有稳定性. 1.(1)(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等边三角形 思路点拨:三角形的内角和为180°,三个内角度数的份数和是9,每一份度数是20,则三个内角度数分别为40°、60°、80°,是锐角三角形. 答案:B (2)三角形的三边分别为3,1-2a,8,则a的取值范围是( ) A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-2 思路点拨:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性. 解析:根据三角形三边关系得:8-3<1-2a<8+3,解得-5<a<-2,应选B. 2.(1)(2010宁波市)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有 ( ) A.5个 B.4个 C.3个 D.2个 考点:等腰三角形 答案:A 【变式1】已知a,b,c为△ABC的三条边,化简得_________. 【变式2】有五根细木棒,长度分别为1cm,3cm,5cm,7cm,9cm,现任取其中的三根木棒,组成一个三角形,问有几种可能( ) A.1种 B.2种 C.3种 D.4种 【变式3】等腰三角形中两条边长分别为3、4,则三角形的周长是_________. 【变式4】如果三角形的一个内角等于其他两个内角的和,这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.不能确定 答案:1. 思路点拨:本题利用三角形三边关系,使问题代数化,从而化简得出结论. 解析:∵a,b,c为△ABC的三条边 ∴a-b-c<0, b-a-c<0 ∴=(b+c-a)+(a+c-b)=2c. 2. 解析:只有3、5、7或3、7、9或5、7、9三种.应选C. 3. 解析:(1)当腰为3时,周长=3+3+4=10;(2)当腰为4时,周长=3+4+4=11.所以答案为10或11.
4. 思路点拨:理解直角三角形定义,结合三角形内角和得出结论. 解析:若△ABC的三个内角∠A、∠B、∠C中,∠A+∠B=∠C 又∠A+∠B+∠C=180°,所以2∠C=180°,可得∠C=90°,所以选C 考点二、三角形的“四心”和中位线 三角形中的四条特殊的线段是:高线、角平分线、中线、中位线. 1.内心: 三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等. 2.外心: 三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等. 3.重心: 三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍. 4.垂心: 三角形三条高线的交点. 5.三角形的中位线: 连结三角形两边中点的线段是三角形的中位线. 中位线定理:三角形的中位线平行于第三边且等于第三边的一半. 要点诠释: (1)三角形的内心、重心都在三角形的内部. (2)钝角三角形的垂心、外心都在三角形的外部. (3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点. (4)锐角三角形的垂心、外心都在三角形的内部. 3.(1)与三角形三个顶点距离相等的点是这个三角形的( ) A.二条中线的交点 B. 二条高线的交点 C.三条角平分线的交点 D.三边中垂线的交点 考点:线段垂直平分线的定理. 思路点拨:三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.答案D若改成二边中垂线的交点也正确. 4.一个三角形的内心在它的一条高线上,则这个三角形一定是( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形 考点:三角形角平分线定理. 思路点拨:本题考查三角形的内心是三角形角平分线的交点,若内心在一条高线上,又符合三线合一的性质.所以该三角形是等腰三角形.故选B. 【变式1】如图,已知△ABC中,∠A=58°,如果(1)O为外心;(2)O为内心;(3)O为垂心;分别求∠BOC的度数.
【变式2】如果一个三角形的内心,外心都在三角形内,则这个三角形是( ) A.锐角三角形 B.只有两边相等的锐角三角形 C.直角三角形 D.锐角三角形或直角三角形 【变式3】求证:三角形的一条中位线与第三边上的中线互相平分 答案:1. 解析:∠A是锐角时,(1)O为外心时,∠BOC=2∠A =116°; (2)O为内心时,∠BOC=90°+∠A=119°; (3)O为垂心,∠BOC=180°-∠A=122°. 2. 解析:三角形的内心都在三角形内部;锐角三角形外心在三角形内部;直角三角形的外心在三角形斜边的中点上、钝角三角形的外心三角形外部.故选A. 3. 思路点拨:本题考查三角形的中位线定理,三角形的中位线平行于第三边且等于第三边的一半. 解析:已知:如图,在△ABC中,AD=DB,BE=EC,AF=FC. 求证:AE、DF互相平分. 证明:连结DE、EF ∵AD=DB,BE=CE ∴DE∥AC(三角形中位线定理) 同理EF∥AB ∴四边形ADEF是平行四边形 ∴AE、DF互相平分(平行四边形的对角线互相平分) 考点三、全等三角形 1.定义: 能完全重合的两个三角形叫做全等三角形. 2.性质: (1)对应边相等 (2)对应角相等 (3)对应角的平分线、对应边的中线和高相等 (4)周长、面积相等 3.判定: (1)边角边(SAS) (2)角边角(ASA) (3)角角边(AAS) (4)边边边(SSS) (5)斜边直角边(HL)(适用于直角三角形) 要点诠释: 判定三角形全等至少必须有一组对应边相等. 5.对于下列各组条件,不能判定△≌△的一组是( ) A.∠A=∠A′,∠B=∠B′,AB=A′B′ B.∠A=∠A′,AB=A′B′,AC=A′C′ C.∠A=∠A′,AB=A′B′,BC=B′C′ D.AB=A′B′,AC=A′C′,BC=B′C′
思路点拨:判定三角形全等的条件中,已知两边及一角必须是两边及其夹角,而已知两角一边和三边都可以判定三角形全等. 解析:A可利用ASA判定;B可利用SAS判定;D可利用SSS判定.而C是两边和一边对角对应相等,不能判定三角形全等.故选C. 6.(2010湖南长沙)在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数. 第8题图 考点:三角形全等的判定及性质. 思路点拨:(1)利用ASA判定;(2) 利用 △BEC≌△DEC 答案:(1)证明:∵四边形ABCD是正方形 ∴BC=CD,∠ECB=∠ECD=45° 又EC=EC ∴△ABE≌△ADE (2)∵△ABE≌△ADE ∠BED ∴∠BEC=∠DEC= ∵∠BED=120°∴∠BEC=60°=∠AEF ∴∠EFD=60°+45°=105° 【变式1】两个三角形有以下三对元素对应相等,则不能判定全等的是( ) A.一边和任意两个角 B.两边和它们的夹角 C.两个角和它们一角的对边 D.三角对应相等 【变式2】如图,已知:AC =DB,要使≌,只需增加一个条件是___________. 【变式3】如图,已知,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是________.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库第十一章三角形专题 - 图文在线全文阅读。
相关推荐: