?lim(cos1?cos???) 不存在.
??0∴
?10x???1sinx??dx发散.
??当????1时,x∴x∴x???x???1,x??0,1?
sinx???x???1sinx??,而x???1sinx??在?0,1?(L)不可积. sinx??在?0,1?(L)不可积.
??从而当????1时,
?x01??sinx??dx发散.
141.设X,Y如3.5.1,f?L(X),g?L1(Y),则
?X?Yf(x)g(y)d(???)??fd??gd?.
XY证 ∵f(x)g(y)?0由Fubini定理的3.5.2(i) ∴
?X?Yf(x)g(y)d(???)??[?f(x)g(y)d?]d?
XY其中内层积分中的f(x)与y无关,故可作为常数提出,于是得到
?[?XYf(x)g(y)d?]d???f(x)[?g(y)d?]d?.
XY同理,??中的积分值又与x无关,可作为常数提出,故得:
YXY?Xf(x)[?g(y)d?]d??[?fd?][?gd?].
11又由已知:f?L(X),g?L(Y),∴
?Xfd???,?gd???
Y?X?Yf(x)g(y)d(???)??fd??gd???
XY 82
1即fg?L(Z),Z?X?Y,再由Fubini定理3.5.2的(ii)知
?X?Yf(x)g(y)d(???)??fd??gd?.
XY42.设f,g?M(X),?X??,则
f(x)?g(y)?L1(???)?f,g?L1(?).
证 “?”由Fubini定理故对几乎处处的y,?X?X(f?g)d???dy?(f?g)dx,
XX?X(f?g)dx有限,从而利用反证法可取到一点y0,
使得g(y0)???,而且
?X即f(x)?g(y0)?L1(?). [f(x)?g(y0)]dx???,
又?X??,故g(y0)?L1(?),从而f(x)?(f(x)?g(y0))?g(y0)?L1(?) 同理g(x)?L1(?) . “?” ∵f,g?L∴
1?Xfd???,?gd???Y
??X?Xf(x)?g(y)d(???)??d??f(x)?g(y)d?XX
?????f(x)?g(y)?dy?dx?????X?f(x)??g(y)dy?dx??X?X?X?X?
???X???f(x)dx?X??dx???XXg(y)dy???X???fdx??gdy????XX?
1∴f(x)?g(y)?L(???) ∴f(x)?g(y)?L(???). 43.求
1??0?e?ax2?e?bx2(0?a?b). ?dxxb2解 原式???0xdx?e?xydy. ∵xe?xy?0 ∴由Fubini定理,
ab?x2ya2?
?0xdx?edy??dy?ea0b??x2yxdx??ba11bdy?ln. 2y2a83
44.设f?L?0,a?,g(x)?1?axaaf(t)dt,则?gdm??fdm.
00t证
?ta0gdm??dx?0aa0aaf(t)f(t)??x,a?(t)dt??dt??[x,a](t)dx
00tt
??dt?0a0af(t)aaaf(t)tf(t)dx??dt?dx???tdt??f(t)dt??fdm
00000ttt45.设f?L?a,b?,则
1?baf(x)dx?xa21?b?f(y)dy??f(x)dx. ?a??2?证 由式左,可判定二重积分域是图示?s,
?f?L1?a,b? ∴f(x)f(y)?L1(?a,b???a,b?)
令式左?I,由Fubini定理,I可换序为I?∴2I?I?I?1?baf(y)dy?f(x)dx?I1
ybyb?babf(x)dx?f(y)dy??f(y)dy?f(x)dx
aaxbxb??f(x)dx?f(y)dy??f(x)dxaaa?bx2f(y)dy
bs(a,a)b(b,b)bbb??f(x)dx?f(y)dy???f(x)dx?
?a?aa??则
?baf(x)dx?1xa21?b?f(y)dy??f(x)dx ?a??2?45题图
ba46.设f?L?a,b?,则
?badx?dy?f(t)dt?2?(t?a)(b?t)f(t)dt.
axby1 注:本题有错,以f(t)?1为例,则f?L[a,b],容易求出
(b?a)3?0(当b?a). 左??dx?dy?dt?0,而右?2?(t?a)(b?t)dt?aaax6bbyb 具体改正方案,留作讨论. 47.设f,g?L[a,b],F(x)?1?xafdm,G(x)??gdm,则
ax 84
bbFgdm?FG??fGdm. ?aaab证 ∵f,g?L?a,b?,由Fubini定理,
1?baFgdm??gdm?fdm??dx?f(y)g(x)dyaaaabbbxbx
bbay??dx??[a,x](y)f(y)g(x)dy??dy??[a,x](y)f(y)g(x)dx??dy?fgdxaabbaa
(令y?x)? ? ??babdx?fgdy??dx[?fgdy??fgdy]
xaaababbbx?dx?afgdy??dx?fgdy
aabbxabaaaabx?bafdm?gdm??fdm?gdm?FGb??fGdm
48.设当xy为有理数时f(x,y)?0,否则f(x,y)?1,求
解 ?x0?(0,1)
??1100f(x,y)dxdy.
(1)若x0?(0,1)?Q,当y?Q,则x0y?Qc,故f(x0,y)?1 (2)若x0?(0,1)?Qc,则?y0?Qc,使得x0y0?Q 令Y?ny0n?Q,则?y?Y,x0y?Q,f(x0,y)?0
cc但?y?Q\\Y,x0y?Q,f(x0,y)?1,因为Q可数,故Y可数,故mY?0,
c??所以?x0?(0,1),f(x0,y)?1,a.e..因此
??1100f(x,y)dxdy=1.
49.设?是N上的计数测度,f(n,n)??f(n?1,n)?1(n?N),对其他
(m,n)?N?N有f(m,n)?0.则??f(m,n)?mn??f(m,n),
nm 85
?f(m,n)??.
m,n 证 ①???f(m,n)=?(f(m,1)?f(m,2)????f(m,n)???)
mnm注意到按f(m,n)的定义,对每一固定的m,关于n的第一重求和号下,即
f(m,1)?f(m,2)???中最多只有两项不为零
?当n?m时?f(m,n)?1 于是对m?1时,?f(1,n)?1, ?n?1?f(m,n)??1 当n?m?1时而对m?2,都有
???f(m,n)?f(m,m?1)?f(m,m)?(?1)?1?0
n?1?m?1?现在
??f(m,n)??(f(m,1)?f(m,2)???)?1?0????1
m?1n?1②另一方面
??f(m,n)??(f(1,n)?f(2,n)?f(3,n)???)
n?1m?1n?1???而依f(m,n)的定义,对固定的n在一个求和号下
f(1,n)?f(2,n)?f(3,n)????f(m,n)???
实际上都只有两项不为零,且取相反数?1
当m?n时?f(m,n)?1 ??f(m,n)??1 当m?n?1时于是
??f(m,n)?0?0?0????0.
n?1m?1?????f(m,n)?
mn??f(m,n)
nmm?nm?nm?n③
?f(m,n)??f(m,n)??f(m,n)??f(m,n)
m,n??1???1?0??
m?n评注:本题在乘积空间N?N上,给出一个二元函数f(m,n)用以说明Fubini定理关于f(x,y)?L(N?N)的条件不可忽视,否则两个二次积分就不相等.
86
x50.设J??0,1?,E?J?J,?x?J:Ex与J\\E均可数,则E关于m?m不可测.
证 本题有理解问题,应理解为J??0,1??X?Y. E?X?Y,任一x?X, .又对任一Ex??y:(x,y)?E?是可数集(故mEx?0,对每一x?X?J)
y?Y?J,J\\Ey是可数集,于是mEy?mJ?m(J\\Ey)?1?0?1
于是如果E可测,由定理3.5.1将有??m?m乘积测度
11?E??m(Ex)dm?X?0mExdx=?0dx=0
010又有?E??Ym(Ey)dm??mEydy?1
??Xm(Ex)dm??Ym(Ey)dm,矛盾.故E关于m?m不可测.
xyx注:只能作这种理解:即题设中所言J\\E可数中所言Ex?Ex,且E?E是
上截口,特指对第二变元y?J的截口.
87
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库胡适耕 实变函数答案 第三章A(5)在线全文阅读。
相关推荐: