?当fn???f,则?fn?有子列fnk几乎处处收敛于f.
??∴
?Xf??limfnk?lim?fnk?const???
XX∴f可积 ∴f?L1. 23.设
??Xfnd???,则?X?fd????nXfnd?.
证 由于fn?M?(X),故于是
??Xfnd????fnd???
X?fnn?L.设Fn??fk,则limFn??fk.
1k?1n?nk?1∴Fn?又
?fk?1k??fk??fk?L1.
k?1k?1n??Xfn???fn???故fn?L1?fn?L1.
X因为limn?XFn?lim?nX?fk?1Xnk?lim??fk???fk ,由控制收敛定理,有
nk?1Xk?1Xkn?lim?Fn??limFn??nXXn?fk?1?,则
??fd????XnXfnd?.
24.设0?a?b,fn(x)?ae?nax?be?nbx(n?1,2?),验证
???0fndm???0?fdm,且??n?0fndm??.
证 ∵
??0fndm????01?nbx?nax??nax?nbxae?bedx???n(e?e)0?0
∴
??0fndm?0
?nax??f0?ndm???0?(ae?be?nbx)dx???0ae?axbe?bx(?)dx ?ax?bx1?e1?e 72
???0?11?ax?bxd(1?e)?d(1?e) ?ax?bx?01?e1?e1?e ??limln??0?01?e?ax∴
?bx??1?e?b?b?lnlim?ln
??0?01?e?a?a???0fndm??xn?0?fndm,取xn??xnln(b/a),则
n(b?a)??0fndm??(?fn)dm??fndm
0??(be?nbx?ae?nax)dm???ae?nax?be?nbx?dm
0xnxn??x1?1?nax(e?e?nbx)n?(e?nbx?e?nax)
xnn0nab??2??a?b?a?a?b?a? ???????n??b?b????ab??b?ab?2??a??a?a?fndm?????????.
n??b??b????∴???0xsin()?ndx. 25.求lim?n0nx??1?()??n??xsin()1n,在0,1上,f(x)?解 令fn(x)??1, ??nnnx?x???1?()1?()????nn????在?1,???上,fn(x)?1x2Cn?()2n?11?
n(n?1)x2(n?1)x2?()2n2n73
?1x2x2?22n?1x2x2?24?4(n?2) x2?1,x?(0,1)?1取g(x)??4,则g(x)?L?0,???.
,x?(1,??)??x2又fn(x)?0,a.e(n??),由控制收敛定理limn??0fn(x)??0?0.
0?26.求limn??01?nx2dx. 2n(1?x)1?nx21?nx2?1, 解 令fn(x)?,在?0,1?上,fn(x)?22n1?nx(1?x)11?nxnx2?2?4(n?2) 在?1,???上,fn(x)?12?2x2x2Cnx?Cn?x41?n?1x21?2221??1,x?(0,1)?1取g(x)??4,则g(x)?L?0,???.
,x?(1,??)?2x?又?fn(x)?0,a.e(n??),由控制收敛定理limn??0?1?nx2dx?0?0. 2n?0(1?x)27.求limn??0nxsin5nxdx. 221?nx解 令fn(x)?nx1nx5sinnx,在上,f(x)??0,1??1, n1?n2x22nxx211?3, 3nx2x2在?1,???上,fn(x)??11,x?(0,1)??x21取g(x)??,则g(x)?L?0,???
?13,x?(1,??)??x2
74
又fn(x)?0,a.e(n??),由控制收敛定理limn??0fn(x)dx??0?0.
0?28.求limn??0x2?n(1?)dx.
nx2?n),在?0,1?上,fn(x)?1, 解 令fn(x)?(1?n在?1,???上,fn(x)?111??, x2nx2x2(1?)1?n?nn?1,x?(0,1)?1取g(x)??1,则g(x)?L?0,???.
,x?(1,??)??x2又?limfn(x)?limnn1?xx2??(1?)?n????2?nx2?e?x
2由控制收敛定理limn?0fn(x)dx??e?xdx?0?2?2.
29.求limn??01(nx?)?ndx.
x1x解 令fn(x)?(nx?),在?0,1?上,fn(x)??n11(nx?)nx?1,
xnxn1在?1,???上,fn(x)???(n?2), 2n2n2(1?nx)(nx)x?1,x?(0,1)?1取g(x)??1,则g(x)?L?0,???.
,x?(1,??)??x2又fn(x)?0,a.e(n??) ∴limn??0fn(x)dx??0?0.
0? 75
30.求limn??0e?xndx.
n解 令fn(x)?e?x,在?0,1?上,fn(x)?在?1,???上,fn(x)?1exn?1?1, 0e1exn?1?x?e. xe取g(x)???1,x?(0,1)?x?e,x?(1,??)1,则g(x)?L?0,???.
?fn(x)?1,a.e,x?(0,1)又∵?
f(x)?0,a.e,x?(1,??)?n∴limn??0fn(x)dx?lim?fn(x)dx?lim?n0n1??1fn(x)dx??1??0?1.
011??31.
??0?sinxan?1dx??2(a?1) . ex?an?1n?1 证 由??1知,当x?(0,??)时,
?ex?1,故有
?sinxe?x?sinx?x?xn??(esinx)(?e), ?x?xe??1??en?0令fk(x)??(en?1k?xsinx)(?e?x)n?1(k?1,2,?),则fk(x)?x, xe?1sinx,且 xe??当0?x?1时,易验知fk(x)?而当1?x??时,易验知fk(x)?
12?,取控制函数 ex?1exx 0?x?1 ex?1F(x)?
2 1?x?? ex76
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库胡适耕 实变函数答案 第三章A(3)在线全文阅读。
相关推荐: