3.2.2.1 定义各层材料的性质
这种方法由下到上一层一层定义材料层的配置。底层为第一层,后续的层沿单元坐标系的Z轴正方向自底向上叠加。如果叠层结构是对称的,可以只定义一半的材料层。
有时,某个物理层可能只延伸到模型的一部分。为了建立连续的层,可以把这些中断的层的厚度设置为零,图5-1显示了一个四层模型,其中第二层在某处中断了。
图5-1 有中断层的层叠模型
对于每一层材料,由单元实常数表[R,RMORE,RMODIF](Maim Menu> Preprocessor>RealConstants)定义如下性质: 材料性质(通过材料参考号MAT来定义); 层的定向角(THETA); 层的厚度(TK)。
分层的截面可以通过截面工具来定义(Prep>Sections>Shell-Add/Edit)。对每一层,通过截面命令或截面工具(SECTYPE,SECDATA)定义下面的属性: 材料性质(通过材料参考号MAT来定义) 层的定向角(THETA) 层的厚度(TK)
每层积分点的数目(NUMPT)
材料性质--与其它单元一样用MP命令(Main Menu>
Preprocessor>Material Props>Material Models>Structural Implicit> Linear> Elastic>Isotropic 或 Orthotropic)定义线性材料特性,用 TB 命令定义非线性数据表(塑性仅可以用于 SOLID191 和 SHELL91单元)。唯一不同是,复合材料单元的材料参考号由其实常数表来指定。对于层单元,MAT 命令(Main Menu>Preprocessor>-Meshing-Attributes> Default Attribs)属性仅用于 MP 命令的DAMP 和REFT 参数。各层的线性材料特性可以是各向同性,也可以是正交异性,见《ANSYS Elements Reference》。典型的纤维加强复合材料包括各向异性材料,且这些特性主要以主泊松比的形式提供(见《ANSYS Theory Reference》§2.1.1)。材料方向平行于层坐标系(由单元坐标系和层定向角定义)。
层的定向角--它定义层坐标系相对于单元坐标系的角度。它是这两个坐标系的X 轴之间的夹角(单位为“度”)。缺省情况是层坐标系与单元坐标系平行。所有单元都有缺省的坐标系,可用ESYS命令(Main Menu>Preprocessor>
Attributes>Default Attribs)来改变。用户还可用自己的子程序来定义单元和层坐标系( USERAN 和 USANLY,见《ANSYS Guide to User Programmable Features》)。
层的厚度--如果层的厚度是常数,用户只需定义节点I处的厚度 TK(I),否则四个角节点处的厚度都需输入。中断的层必须为零厚度。
每层的积分点数目—用于确定计算结果的详细程度。对于非常薄的层,当其和很多其它层一起使用时,有一个积分点就足够了。但对于层数很少的片状结构,需要的积分点就应该比较多,缺省为3。本特性仅适用于通过截面命令定义的截面。
注意--目前,GUI只允许层数(实常数)最大值为100。如果需要层数大于100,可以使用 R 和 RMORE 命令来实现。
3.2.2.2定义本构矩阵
这是定义各层材料性质的另一种方式,适用于 SOLID46 和 SHELL99(通过设置其 KEYOPT(2))。该矩阵表示了单元的力-力矩与应变-曲率的关系,必须在ANSYS 外进行计算,详见《ANSYS Theory Reference》。它们可以通过KEYOPT(1)设置为求解输出的一部分。这种方法的主要优点是: 它允许用户合并聚合复合材料的性质; 支持热载荷向量;
可表示层数无限制的材料。
矩阵的元素作为实常数来定义。通过定义单元平均密度(实常数 AVDENS )还可以将质量影响考虑进去。但是,使用了这种方法时,由于没有输入每层材料各自的信息,就不能得到每层材料的详细结果。
3.2.2.3夹层(“三明治”)结构和多层结构
夹层结构有两个薄的面板和一个厚但相对软的夹心层。如图5-2显示了一个夹层结构。并假定夹心层承受了所有的横向剪切载荷,而面板则承受了所有的(或几乎所有的)弯曲载荷。
图5-2 夹层结构
夹层结构可用 SHELL63、SHELL91 或 SHELL181 单元来建立有限元模型。SHELL63 只能有一层,但可通过实常数选项来模拟,即通过修改有效弯曲惯性矩和中面到外层纤维的距离来考虑对夹心层的影响。SHELL91 可用于夹层结构并且允许面板和夹心层有不同的性质,该单元的 KEYOPT(9)=1 即可激活“夹层”选项,只有 SHELL91 有此夹层选项。SHELL181 通过能量等效方法模拟横向剪切偏转。
3.2.2.4节点偏置
SHELL181通过截面命令定义截面,可以在定义截面时通过SECOFFSET命令偏置节点。使用 SHELL91 和 SHELL99 单元的节点偏置选项( KEYOPT(11))可将单元的节点设置在壳的底面、中面或顶面上。图5-3告诉您如何方便的建立台阶状的叠层板模型。图5-3表示节点在板的底面(KEYOPT(11)=1),各板在这点对齐。图5-4 表示节点在板的中面(KEYOPT(11)=0),各板在这点对齐。
图5-3 SHELL91 和 SHELL99 节点在底面的分层壳单元
图5-4 SHELL91 和 SHELL99 节点在中面的分层壳单元
3.2.3定义失效准则
失效准则用于获知在所加载荷下,各层是否失效。用户可从三种预定义好了的失效准则中选择失效准则,或者自定义多达六种的失效准则。三种预定义失效准则是:
最大应变失效准则,它允许有九个失效应变; 最大应力失效准则,它允许有九个失效应力;
Tsai-Wu失效准则,它允许有九个失效应力和三个附加的耦合系数。有两种方式可用以计算这种准则,详见《ANSYS Theory Reference 》式(14.99-35)和式(14.99-36)。
失效应变、应力和耦合系数可以是与温度相关的。《ANSYS Elements Reference》中有每种准则所需数据的详细介绍。通过TB命令族或FC命令族指定失效准则。 TB命令族包括TB、TBTEMP和TBDATA 命令(Main Menu>Preprocessor> Material Props>Material Models>Structural>
Nonlinear>Inelastic>Non-Metal Plasticity>Failure Criteria)。其典型的命令流如下:
TB,FAIL,1,2 ! Data table for failure criterion, material 1, ! no. of temperatures = 2
TBTEMP,,CRIT ! Failure criterion key
TBDATA,2,1 ! Maximum Stress Failure Criterion (Const. 2 = 1) TBTEMP,100 ! Temperature for subsequent failure properties TBDATA,10,1500,,40,,10000 ! X, Y, and Z failure tensile stresses (Z value
! set to a large number)
TBDATA,16,200,10000,10000 ! XY, YZ, and XZ failure shear stresses TBLIST
TBTEMP,200 ! Second temperature TBDATA,...
有关TB, TBTEMP, TBDATA 和 TBLIST 命令见《ANSYS Commands Reference》。 FC命令族包括FC、FCDELE和FCLIST命令(Main Menu>Preprocessor> Material Props>Material Models>Structural>
Nonlinear>Inelastic>Non-Metal Plasticity>Failure Criteria 和 Main Menu>General Postprocessor>
Failure Criteria),其典型的命令流如下: FC,1,TEMP,, 100, 200 ! Temperatures
FC,1,S,XTEN, 1500, 1200 ! Maximum stress components FC,1,S,YTEN, 400, 500 FC,1,S,ZTEN,10000, 8000 FC,1,S,XY , 200, 200 FC,1,S,YZ ,10000, 8000 FC,1,S,XZ ,10000, 8000
FCLIST, ,100 ! List status of Failure Criteria at 100.0 degrees FCLIST, ,150 ! List status of Failure Criteria at 150.0 degrees FCLIST, ,200 ! List status of Failure Criteria at 200.0 degrees
PRNSOL,S,FAIL ! Use Failure Criteria
注意—TB命令(TB,TBTEMP和TBDATA)仅适用于SHELL91、SHELL99、SOLID46或SOLID191,而FC和FCLIST命令适用于所有的二维或三维结构实体单元和三维壳单元。
定义失效准则的一些注意事项:
失效准则是正交各向异性的,因此用户必须输入所有方向上的失效应力或失效应变值(在压缩值等于拉伸值时例外);
如果不希望在某个特定的方向上检查失效应力或失效应变,则在那个方向上定义一个大值(如前面命令流中那样)。
用户可通过用户子程序 USRFC1 到 USRFC6 自定义失效准则。这些子程序应事先与 ANSYS 程序作联接。见《ANSYS Advanced Analysis Techniques Guide》中有关用户编程功能的说明。
3.2.4应遵循的建模和后处理规则
在复合材料单元的建模和后处理中,一些附加规则如下:
1、复合材料会体现出几种类型的耦合效应,诸如弯扭耦合、拉弯耦合等。这是由具有不同性质的多层材料互相重叠引起的。其结果是,如果材料层的积叠顺序是非对称的,则即使模型的几何形状和载荷都是对称的,也不能按照对称条件只求解一部分模型,因为结构的位移和应力可能不对称。
2、在模型自由边界上的层间剪切应力通常都是很重要的。要求得在这些部位相对精确的层间剪切应力,则模型边界上的单元尺寸应约等于总的叠层厚度。对于壳来说,增加实际材料层数并不一定提高层间剪切应力的求解精度。但是,如果用 SOLID46、SOLID95、SOLID191 单元,则沿厚度方向上的叠加单元会使得沿厚度方向上层间应力的求解更为精确。壳单元的层间横向剪应力的计算基于单元上下表面不承受应力的假设。这些层间剪应力只在单元的中心处计算,而不是沿着单元边界。建议使用壳-实体子模型精确计算自由边的层间应力。
3、因为复合材料的求解需要大量的输入数据,故在进行求解之前应对这些数据作检验,可用如下命令来完成这些工作:
ELIST 命令(Utility Menu>List>Elements):列表显示所有被选单元的节点和属性。
EPLOT 命令(Utility Menu>Plot>Elements):图形显示所有被选单元。在该命令之前使用[/ESHAPE,1]命令(Utility Menu>PlotCtrls> Style>Size and Shape)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库Ansys复合材料结构分析操作指导书(4)在线全文阅读。
相关推荐: