77范文网 - 专业文章范例文档资料分享平台

§12.3 一般项级数 数学分析课件(华师大 四版) 高教社ppt 华东(3)

来源:网络收集 时间:2020-02-21 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

§3 一般项级数交错级数绝对收敛级数及其性质

阿贝尔判别法和狄利

克雷判别法

定理12.13设级数(5)绝对收敛, 且其和等于S, 则任意重排后所得到的级数(7)绝对收敛且和也为S.

*证只要对正项级数证明了定理的结论,对绝对收敛级数就容易证明定理是成立的.

第一步设级数(5)是正项级数, 用Sn表示它的第n 个部分和. 用

?m?v1?v2???vm表示级数(7)的第m个部分和. 因为级数(7)为级数

(5)的重排, 所以每一vk(1?k?m)应等于某一uik(1?k?m).记n?max{i1,i2,?im},数学分析第十二章数项级数高等教育出版社§3 一般项级数交错级数绝对收敛级数及其性质

阿贝尔判别法和狄利

克雷判别法

则对于任何m,都存在n,使?m?Sn.由于limSn?S,所以对任何正整数m,都有?m?S,n??即级数(7)收敛, 且其和??S.由于级数(5)也可看作级数(7)的重排, 所以也有

S??, 从而得到??S. 这就证明了对正项级数定理成立.

第二步证明(7)绝对收敛.设级数(5)是一般项级数

且绝对收敛,则由级数(6)收敛第一步结论, 可得

?vn收敛, 即级数(7)是绝对收敛的.

数学分析第十二章数项级数高等教育出版社§3 一般项级数交错级数绝对收敛级数及其性质

阿贝尔判别法和狄利

克雷判别法

第三步证明绝对收敛级数(7)的和也等于S.根据第一步的证明, 收敛的正项级数重排后和不变, 所以先要把一般项级数(5)分解成正项级数的和. 为此令

un?unun?un. (8)pn?,qn?22当un?0时,pn?un?0,qn?0;当un?0时,pn?0,qn?un??un?0.从而0?pn?un,0?qn?un, (9)pn?qn?un,pn?qn?un. (10)数学分析第十二章数项级数高等教育出版社§3 一般项级数交错级数绝对收敛级数及其性质

阿贝尔判别法和狄利

克雷判别法

由级数(5)绝对收敛, 及(9)式, 知?pn,?qn都是收敛的正项级数. 因此

S??un??pn??qn.对于级数(5)重排后所得到的级数(7), 也可按(8)式的办法, 把它表示为两个收敛的正项级数之差

???qn?,?vn??pn?,?qn?分别是正项级数?pn,?qn的重排,显然?pn其和不变, 从而有

?v??p???q???p??qnnnnn?S.数学分析第十二章数项级数高等教育出版社§3 一般项级数交错级数绝对收敛级数及其性质

阿贝尔判别法和狄利

克雷判别法

注定理12.13只对绝对收敛级数成立. 条件收敛级数重排后得到的新级数不一定收敛,即使收敛, 也不一定收敛于原来的和.更进一步, 条件收敛级数适当重排后, 既可以得到发散级数,也可以收敛于

?n?11条件收敛,任何事先指定的数.例如级数???1?nn?1设其和为A, 即

11111111?(?1)n?1?2?3?4?5?6?7?8???A.1乘以常数后,有2n?1数学分析第十二章数项级数高等教育出版社

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库§12.3 一般项级数 数学分析课件(华师大 四版) 高教社ppt 华东(3)在线全文阅读。

§12.3 一般项级数 数学分析课件(华师大 四版) 高教社ppt 华东(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/jiaoyu/783500.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: