③统计分组按分组标志的性质分为品质分组和变量分组。品质分组是将总体按品质标志进行分组,如企业按经济成份、地理位置分组,职工按性别、文化程度分组等;变量分组是将总体按数量标志进行分组,如企业按职工人数、劳动生产率分组,职工按工龄、工资分组等。 3、分组体系与分组标志的选择 ①分组体系
统计分组后所形成的一系列互相联系、互相补充的组的整体称分组体系。分组体系有平行分组体系和复合分组体系两种。平行分组体系是选择两个或两个以上的标志对总体进行一次次简单分组后所形成的体系;复合分组体系就是复合分组后形成的体系。 ②分组标志的选择
分组标志的选择是统计分组的关键。分组标志,即将同质总体区分为不同组的标准或依据。分组标志一旦选定,就必然突出了总体在该标志下的性质差别,其他的差别看不见了。分组标志选择不当,不但无法显示现象的根本特征,甚至会混淆事物的性质,歪曲社会经济的真实情况。
正确选择分组标志,必须根据统计研究的任务目的,抓住反映现象本质区别和内在联系的标志作为分组标志。 4、统计分组的方法 (1)品质标志分组方法
品质标志分组一般较简单,分组标志一旦确定,组数、组名、组与组之间的界限也就确定。有些复杂的品质标志分组可根据统一规定的划分标准和分类目录进行。
(2)数量标质分组方法
按数量标志分组的目的并不是单纯确定各组在数量上的差别,而是要通过数量上的变化来区分各组的不同类型和性质。数量标志分组方法从以下几个方面来说明:
①单项式分组和组距式分组
对离散变量,如果变量值的变动幅度小,就可以一个变量值对应一组,称单项式分组。如居民家庭按儿童数或人口数分组,均可采用单项式分组。 离散变量如果变量值的变动幅度很大,变量值的个数很多,则把整个变量值依次划分为几个区间,各个变量值则按其大小确定所归并的区间,区间的距离称为组距,这样的分组称为组距式分组。
也就是说,离散变量根据情况既可用单项式分组,也可用组距式分组。在组距式分组中,相邻组既可以有确定的上下限,也可将相邻组的组限重叠。 连续变量由于不能一一列举其变量值,只能采用组距式的分组方式,且相邻的组限必须重叠。如以总产值、商品销售额、劳动生产率、工资等为标志进行分组,就只能是相邻组限重叠的组距式分组。
在相邻组组限重叠的组距式分组中,若某单位的标志值正好等于相邻两组的上下限的数值时,一般把此值归并到作为下限的那一组(适用于连续变量和离散变量)。
组距式分组使资料的真实性受到一定程度的损害。组距式分组的假定条件是:变量在各组内的分布都是均匀的(即各组标志值呈线性变化)。
通过组距式分组以后,把各组内部各单位的次要差异抽象去了,而把各组之间的主要差异突出出来,这样,各组分配的规律性可以更容易显示出来。根据这个道理,如组距太小,分组过细,容易将属于同类的单位划分到不同的组,因而显示不出现象类型的特点;但如果组距太大,组数太少,会把不同性质的单位归并到同一组中,失去区分事物的界限,达不到正确反映客观事实的目的。因此,组距的大小、组数的确定应根据研究对象的经济内容和标志值的分散程度等因素,不可强求一致。 ②等距分组和不等距分组
等距分组是各组保持相等的组距,也就是说各组标志值的变动都限于相同的范围。不等距分组即各组组距不相等的分组。
统计分组时采用等距分组还是不等距分组,取决于研究对象的性质特点。在标志值变动比较均匀的情况下宜采用等距分组。等距分组便于各组单位数和标志值直接比较,也便于计算各项综合指标。在标志值变动很不均匀的情况下宜采用不等距分组。不等距分组有时更能说明现象的本质特征。 ③组限和组中值
组距两端的数值称组限。其中,每组的起点数值称为下限,每组的终点数值称为上限。上限和下限的差称组距,表示各组标志值变动的范围。
各组标志值的平均数,各组标志数的平均数在统计分组后很难计算出来,就常以组中值近似代替。组中值仅存在于组距式分组数列中,单项式分组中不存在组中值。
组中值的计算是有假定条件的,即假定各组标志值的变化是均匀的(与组距式分组的假定条件相同)。一般情况下,组中值=(上限+下限)÷2
对于第一组是 “多少以下”,最后一组是“多少以上”的开口组,组中值的计算可参照邻组的组距来决定。即:缺下限开口组组中值=上限—1/2邻组组距,缺上限开口组组中值=下限+1/2邻组组距。 三、统计分布(分配数列) 1、分配数列的概念、构成要素
在统计分组的基础上,列出各组对应的单位数,形成总体单位数在各个组的分布,称统计分布,又称分配数列或次数分布。分配数列包括两个要素:总体按某标志所分的组和各组对应的单位数(频数) 2、分配数列的类型
分配数列包括品质分配数列和变量分配数列,分别由品质标志分组和数量标志分组形成。变量数列又有单项式数列和组距式数列,分别由单项式分组和组距式分组形成。 3、频数和频率
统计分组后各组对应的单位数称频数,也叫次数;各组单位数占总体单位总数的比重称频率。各组的频率大于0,所有组的频率总和等于1。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
组距数列中,影响各组次数分布的要素是组数、组距、组限和组中值。
有时为了更简便地概括总体各单位的分布特征,还需要编制累计频数数列和累计频率数列。累计有向上累计和向下累计的方法。向上累计是指将各组频数和频率由变量值低的组向变量值高的组累计,表明在这些数值以下所有数值所占的比重;向下累计是指将各组频数和频率由变量值高的组向变量值低的组累计,表明在这些数值以上所有数值所占的比重。(分布数列) 组别 … … … 各组单位数 (频数或次数) … … 比重(%) (频率) … … 品 质 数 列 — 按品质标志分组形成的分配数列
变 量 数 列 — 按数量标志分组形成的分配数列 变量数列的编制步骤 (1) 将原始资料顺序排序,确定变量值的变动范围;
(2) (3)
(4)
例如:
确定组数、组 距、组 限;
汇总,计算各组单位数,各组单位数所占比重, 以及各组的累计频数和累计频率等; 编制统计表
某班级40名学生学习成绩分组资料 按成绩分组 学生人数 比重(%) 60以下 3 7.5 60-70 6 15.0 70-80 15 37.5 80-90 12 30.0 90-100 4 10.0 合计 40 100 例如:某车间40名工人完成生产计划百分数资料: 90,65,100,102,100,104,112,120,124,98, 110,110,120,120,114,100,109,119,123,107, 110,99,132,135,107,107,109,102,102,101, 110,109,107,103,103,102,102,102,104,104 按完成计划百分数分组(%) 90以下 90-100 100-110 110-120 120-130 130-140 合计 工人数 1 3 22 7 5 2 40 比重(%) 2.5 7.5 55.0 17.5 12.5 5.0 100 按完成计划百分数分组(%) 90以下 90-100 100-110 110-120 120-130 130-140 合计
进行向下累计。
向上累计工人数 1 4 26 33 38 40 —— 向上累计比重(%) 2.5 10 65 82.5 95 100 —— 按完成计划百分数分组(%) 向下累计工人数
向下累计比重(%)
90以下 90-100 100-110 110-120 120-130 130-140 合计
4、次数分布特征
40 39 36 14 7 2 —— 100 97.5 90 35 17.5 5 —— 现象总体的性质不同,其次数分布也不同。归纳起来主要有四种类型: ①钟型分布 特征是“两头大,中间小”,即靠近中间的变量值分布的次数多,靠近两边的变量分布次数少,形若古钟。
②U型分布 其特征与钟型分布正相反,靠近中间的变量值分布的次数少,靠近两端的变量值分布次数多,形成“两头大,中间小”的U字型分布。如人口死亡现象按年龄分布便是如此。
③J型分布 在社会经济现象中,一些统计总体分布曲线呈J型。 ④洛伦兹分布 洛伦兹曲线专门用以检定社会收入分配的平等程度。洛伦兹曲线拓展可运用于其他社会经济现象,研究总体各单位标志分布集中状况或平均性。洛伦兹曲线又称集中曲线,其运作的条件是:现象总体各组频率与相应的各组标志总量的比重。
5、变量分配数列编制的步骤(3,3,5) ①将原始资料按其数值大小重新排列
只有把得到的原始资料按其数值大小重新排列顺序,才能看出变量分布的集中趋势和特点,为确定全距、组距和组数作准备。 ②确定全距
全距是变量值中最大值和最小值的差数。确定全距,主要是确定变量值的变动范围和变动幅度。如果是变动幅度不大的离散变量,即可编制单项式变量数列,如果是变量幅度较大的离散变量或者是连续变量,就要编制组距式变量数列。 ③确定组距和组数
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库《统计学原理》教案(3)在线全文阅读。
相关推荐: