点评: 本题主要考查了作图的设计和应用,解决问题的关键是根据面积相等求出高画图. 19.(6分)(2014?南昌)有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,×”,如图1.
(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.(请用“树形图法”或“列表法“求解)
(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记. ①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少? ②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.
考点: 列表法与树状图法. 专题: 计算题. 分析: (1)列表得出所有等可能的情况数,找出两种卡片上标记都是“√”的情况数,即可求出所求的概率; (2)①根据题意得到所有等可能情况有3种,其中看到的标记是“√”的情况有2种,即可求出所求概率; ②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种,即可求出所求概率. 解答: 解:(1)列表如下: √ × √ √ (×,√) (√,√) (√,√) × (√,×) (×,×) (√,×) × (√,×) (×,×) (√,×) 所有等可能的情况有9种,两种卡片上标记都是“√”的情况有2种, 则P=; (2)①所有等可能的情况有3种,其中随机揭开其中一个盖子,看到的标记是“√”的情况有2种, 则P=; ②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种, 则P=. 点评: 此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 20.(6分)(2014?南昌)如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3. (1)求点C的坐标;
(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.
考点: 反比例函数与一次函数的交点问题. 分析: (1)根据正切值,可得PD的斜率,根据直线垂直,可得BD的斜率,可得直线BC,根据函数值为0,可得C点坐标; (2)根据自变量的值,可得D点坐标,根据待定系数法,可得函数解析式. 解答: 解:Rt△PBD的斜边PB落在y轴上, ∴BD⊥PB, kPD=cot∠BPD=kBD?kPD=﹣1, kBD=﹣, , 直线BD的解析式是y=﹣x+3, 当y=0时,﹣x+3=0, x=6, C点坐标是(6,0); (2)当x=4时,y=﹣×4+3=1, ∴D(4,1). 点D在反比例函数y=(k>0)的图象上, ∴k=4×1=4, ∴反比例函数的解析式为 y=. 点评: 本题考查了反比例函数与一次函数的交点问题,先求出PD的斜率求出BD的斜率,求出直线BD,再求出点的坐标. 四、(本大题共3小题,每小题8分,共24分) 21.(8分)(2014?南昌)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:
某校初中生阅读数学教科书情况统计图表 类别 人数 占总人数比例 a 0.3 重视 57 0.38 一般 b c 不重视 9 0.06 说不清楚 (1)求样本容量及表格中a,b,c的值,并补全统计图;
(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数; (3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议; ②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?
考点: 频数(率)分布直方图;用样本估计总体. 分析: (1)利用类别为“一般”人数与所占百分比,进而得出样本容量,进而得出a,b,c的值; (2)利用“不重视阅读数学教科书”在样本中所占比例,进而估计全校在这一类别的人数; (3)根据(1)中所求数据进而分析得出答案,再从样本抽出的随机性进而得出答案. 解答: 解:(1)由题意可得出:样本容量为:57÷0.38=150(人), ∴a=150×0.3=45, b=150﹣57﹣45﹣9=39, c=39÷150=0.26, 如图所示: (2)若该校共有初中生2300名, 该校“不重视阅读数学教科书”的初中人数约为:2300×0.26=598(人); (3)①根据以上所求可得出:只有30%的学生重视阅读数学教科书,有32%的学生不重视阅读数学教科书或说不清楚,可以看出大部分学生忽略了阅读数学教科书,同学们应重视阅读数学教科书,从而获取更多的数学课外知识和对相关习题、定理的深层次理解与认识. ②如果要了解全省初中生阅读数学教科书的情况,应随机抽取不同的学校以及不同的年级进行抽样,进而分析. 点评: 此题主要考查了频数分布直方表以及条形统计图和利用样本估计总体等知识,理论联系实际进而结合抽样调查的随机性进而得出是解题关键. 22.(8分)(2014?南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°. (1)连接CD,EB,猜想它们的位置关系并加以证明;
(2)求A,B两点之间的距离(结果取整数,可以使用计算器) (参考数据:≈1.41,≈1.73,≈2.45)
考点: 解直角三角形的应用. 分析: (1)连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行线的判定可得CD,EB的位置关系; (2)根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解. 解答: 解:(1)猜想CD∥EB. 证明:连接DE. ∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60° ∴∠CDE=60°÷2×2+30°=90°, ∴∠BED=60°÷2×2+30°=90°, ∴∠CDE=∠BED, ∴CD∥EB. (2)BE=2OE=2×10×cos30°=10cm, 同理可得,DE=10cm, 则BD=10cm, 同理可得,AD=10cm, AB=BD+AD=20≈49cm. 答:A,B两点之间的距离大约为49cm.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库2014南昌中考数学试题(解析版)(3)在线全文阅读。
相关推荐: