【解答】解:(=[=(=2x﹣3
++)×x
+]×x
)÷
∵x为满足﹣3<x<2的整数, ∴x=﹣2,﹣1,0,1, ∵x要使原分式有意义, ∴x≠﹣2,0,1, ∴x=﹣1, 当x=﹣1时,
原式=2×(﹣1)﹣3=﹣5
【点评】此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
23.(10分)(2017?毕节市)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负. 如果小王和小张按上述规则各转动转盘一次,则
(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少? (2)该游戏是否公平?请用列表或画树状图的方法说明理由.
【分析】(1)根据概率公式直接计算即可;
第21页(共28页)
(2)列表得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平. 【解答】解:
(1)∵转盘的4个等分区域内只有1,3两个奇数,
∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率==; (2)列表如下:
1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4) (2,4) (3,4) (4,4) 所有等可能的情况有16种,其中两指针所指数字数字都是偶数或都是奇数的都是4种, ∴P(小王胜)=∴游戏公平.
【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
24.(12分)(2017?毕节市)如图,在?ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D. (1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的长.
=,P(小张胜)=
=,
【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;
第22页(共28页)
(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.
【解答】(1)证明:∵四边形ABCD是平行四边形, ∴AB∥CD,AD∥BC,AD=BC, ∴∠D+∠C=180°,∠ABF=∠BEC, ∵∠AFB+∠AFE=180°, ∴∠C=∠AFB, ∴△ABF∽△BEC;
(2)解:∵AE⊥DC,AB∥DC, ∴∠AED=∠BAE=90°,
在Rt△ABE中,根据勾股定理得:BE=在Rt△ADE中,AE=AD?sinD=5×=4, ∵BC=AD=5,
由(1)得:△ABF∽△BEC, ∴
,即
.
,
=
=4
,
解得:AF=2
【点评】此题考查了相似三角形的判定与性质,以及平行四边形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.
25.(12分)(2017?毕节市)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同. (1)求这种笔和本子的单价;
(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.
【分析】(1)首先设这种笔单价为x元,则本子单价为(x﹣4)元,根据题意可得等量关系:30元买这种本子的数量=50元买这种笔的数量,由等量关系可得方程
=
,再解方程可得答案;
第23页(共28页)
(2)设恰好用完100元,可购买这种笔m支和购买本子n本,根据题意可得这种笔的单价×这种笔的支数m+本子的单价×本子的本数n=1000,再求出整数解即可.
【解答】解:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:
=
,
解得:x=10,
经检验:x=10是原分式方程的解, 则x﹣4=6.
答:这种笔单价为10元,则本子单价为6元;
(2)设恰好用完100元,可购买这种笔m支和购买本子n本, 由题意得:10m+6n=100, 整理得:m=10﹣n, ∵m、n都是正整数,
∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1; ∴有三种方案:
①购买这种笔7支,购买本子5本; ②购买这种笔4支,购买本子10本; ③购买这种笔1支,购买本子15本.
【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
26.(14分)(2017?毕节市)如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点. (1)求证:EF是⊙O的切线; (2)求AE的长.
第24页(共28页)
【分析】(1)利用圆周角定理得到∠DBC=90°,再利用平行四边形的性质得AO∥BC,所以BD⊥OA,加上EF∥BD,所以OA⊥EF,于是根据切线的判定定理可得到EF是⊙O的切线;
(2)连接OB,如图,利用平行四边形的性质得OA=BC,则OB=OC=BC,于是可判断△OBC为等边三角形,所以∠C=60°,易得∠AOE=∠C=60°,然后在Rt△OAE中利用正切的定义可求出AE的长. 【解答】(1)证明:∵CD为直径, ∴∠DBC=90°, ∴BD⊥BC,
∵四边形OABC是平行四边形, ∴AO∥BC, ∴BD⊥OA, ∵EF∥BD, ∴OA⊥EF,
∴EF是⊙O的切线; (2)解:连接OB,如图, ∵四边形OABC是平行四边形, ∴OA=BC, 而OB=OC=OA, ∴OB=OC=BC,
∴△OBC为等边三角形, ∴∠C=60°, ∴∠AOE=∠C=60°,
在Rt△OAE中,∵tan∠AOE=
,
第25页(共28页)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库2017年贵州省毕节市中考数学试卷(5)在线全文阅读。
相关推荐: