出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).
(1)求函数y=f(x)的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?
【精彩点拨】 (1)函数y=f(x)=出租自行车的总收入-管理费;当x≤6时,全部租出;当6<x≤20时,每提高1元,租不出去的就增加3辆,所以要分段求出解析式;
(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.
【自主解答】 (1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3. ∵x∈N,∴3≤x≤6,且x∈N.
当6<x≤20时,y=[50-3(x-6)]x-115=-3x2+68x-115, ?50x-115,3≤x≤6,x∈N
综上可知y=? 2
?-3x+68x-115,6 (2)当3≤x≤6,且x∈N时,∵y=50x-115是增函数,∴当x=6时,ymax=185元. 当6<x≤20,x∈N时, ?34?811 y=-3x2+68x-115=-3?x-3?2+3, ??∴当x=11时,ymax=270元. 综上所述,当每辆自行车日租金定在11元时才能使日净收入最多,为270元. 1.本题建立的是分段函数模型,分段求出各段的最大值,两段中的最大值即为所求,其中求一次函数的最值应用单调性,求二次函数的最值则应用配方法. 2.解决实际应用问题,首先要理解题意,然后建立数学模型转化成数学模型解决;分清各种数据之间的关系是正确构造函数关系式的关键. 第 11 页 共 16 页 [再练一题] 3.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收 2 ?-0.4x+4.2x?0≤x≤5? 入R(x)(万元)满足R(x)=?假定该产品产销平衡(即生产 ?11?x>5?, 的产品都能卖掉),根据上述统计规律,请完成下列问题: (1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本); (2)工厂生产多少台产品时,可使盈利最多? 【解】 (1)由题意得G(x)=2.8+x. 2 ?-0.4x+4.2x?0≤x≤5? ∵R(x)=? 11?x>5?,? ∴f(x)=R(x)-G(x) 2 ?-0.4x+3.2x-2.8?0≤x≤5?=? 8.2-x?x>5?.? (2)当x>5时,函数f(x)递减, ∴f(x)<f(5)=3.2(万元). 当0≤x≤5时,函数f(x)=-0.4(x-4)2+3.6, 当x=4时,f(x)有最大值为3.6(万元). 所以当工厂生产4百台时,可使盈利最大为3.6万元. [探究共研型] 探究1 函数f(x)=x2-2x+2在区间[-1,0],[-1,2],[2,3]上的最大值和最小值分别是什么? 【提示】 函数f(x)=x2-2x+2的图象开口向上,对称轴为x=1. (1)因为f(x)在区间[-1,0]上单调递减,所以f(x)在区间[-1,0]上的最大值为f(-1)=5,最小值为f(0)=2. (2)因为f(x)在区间[-1,1]上单调递减,在[1,2]上单调递增,则f(x)在区间[-1,2]上的最小值为f(1)=1,又因为f(-1)=5,f(2)=2,f(-1)>f(2),所以f(x)在区间[-1,2]上的最大值为f(-1)=5. 第 12 页 共 16 页 (3)因为f(x)在区间[2,3]上单调递增,所以f(x)在区间[2,3]上的最小值为f(2)=2,最大值为f(3)=5. 探究2 你能说明二次函数f(x)=ax2+bx+c的单调性吗?若求该函数f(x)在[m,n]上的最值,应考虑哪些因素? b???b? 【提示】 当a>0时,f(x)在?-∞,-2a?上单调递减,在?-2a,+∞?上单 ????调递增; b??b?? 当a<0时,f(x)在?-2a,+∞?上单调递减,在?-∞,-2a?上单调递增. ????b 若求二次函数f(x)在[m,n]上的最值,应考虑其开口方向及对称轴x=-2a与区间[m,n]的关系. 已知函数f(x)=x2-ax+1, (1)求f(x)在[0,1]上的最大值; (2)当a=1时,求f(x)在闭区间[t,t+1](t∈R)上的最小值. 【精彩点拨】 (1)根据二次函数图象的对称性求函数的最大值. (2)根据函数在区间[t,t+1]上的单调性分三种情况讨论,分别求出f(x)的最小值. 【自主解答】 (1)因为函数f(x)=x2-ax+1的图象开口向上,其对称轴为xa =2,所以区间[0,1]的哪一个端点离对称轴远,则在哪个端点取到最大值, a1 当2≤2,即a≤1时,f(x)的最大值为f(1)=2-a; a1 当2>2,即a>1时,f(x)的最大值为f(0)=1. 1 (2)当a=1时,f(x)=x2-x+1,其图象的对称轴为x=2, 1 ①当t≥2时,f(x)在其上是增函数,∴f(x)min=f(t)=t2-t+1; 11 ②当t+1≤2,即t≤-2时,f(x)在其上是减函数, ?1?3 ∴f(x)min=f(t+1)=?t+2?2+4=t2+t+1; ?? 第 13 页 共 16 页 111?1??1? ③当t<2 ?????1?3 单调递增,所以f(x)min=f?2?=4. ?? 探求二次函数的最值问题,要根据函数在已知区间上的单调性求解,特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,如果二者的位置关系不确定,那么就应对其位置关系进行分类讨论来确定函数的最值. [再练一题] 4.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值. 【解】f(x)=(x-a)2-1-a2,对称轴为x=a. (1)当a<0时,由图①可知,f(x)在区间[0,2]上是增函数,所以f(x)min=f(0)=-1,f(x)max=f(2)=3-4a. (2)当0≤a≤1时,由图②可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a. (3)当1 (4)当a>2时,由图④可知,f(x)在[0,2]上为减函数,所以f(x)min=f(2)=3-4a,f(x)max=f(0)=-1. 1.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( ) A.3,5 C.1,5 第 14 页 共 16 页 B.-3,5 D.5,-3 【解析】 因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5. 【答案】 B 2.函数y=x2-2x,x∈[0,3]的值域为( ) A.[0,3] C.[-1,+∞) B.[-1,0] D.[-1,3] 【解析】 ∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1, 当x=3时,函数取得最大值为3,故函数的值域为[-1,3],故选D. 【答案】 D 3.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是( ) A.2 C.2或-2 B.-2 D.0 【解析】 由题意,a≠0,当a>0时,有(2a+1)-(a+1)=2,解得a=2;当a<0时,有(a+1)-(2a+1)=2,解得a=-2.综上知a=±2. 【答案】 C 4.函数f(x)=6-x-3x在区间[2,4]上的最大值为________. 【解析】 ∵6-x在区间上是减函数,-3x在区间上是减函数, ∴函数f(x)=6-x-3x在区间上是减函数, ∴f(x)max=f(2)=6-2-3×2=-4. 【答案】 -4 5.已知函数f(x)= 2 (x∈[2,6]). x-1 (1)判断函数f(x)的单调性,并证明; (2)求函数的最大值和最小值. 【解】 (1)函数f(x)在x∈[2,6]上是增函数. 证明:设x1,x2是区间[2,6]上的任意两个实数,且x1 -==. x1-1x2-1?x1-1??x2-1??x1-1??x2-1? 第 15 页 共 16 页 由2≤x1 所以函数f(x)= 2 是区间[2,6]上的减函数. x-1 2 在区间[2,6]的两个端点处分别取得最大值与x-1 (2)由(1)可知,函数f(x)= 最小值,即在x=2时取得最大值,最大值是2,在x=6时取得最小值,最小值是0.4. 第 16 页 共 16 页 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库人教A版必修一, 1.3 函数的单调性,导学案(3)在线全文阅读。
相关推荐: