2. Select none if the secondary phase has the same velocity as the primary phase (i.e., no slip velocity).
3. Select user-defined to use a user-defined function for the slip velocity. See the separate UDF Manual for details. 20.6.10定义欧拉模型中的相(Defining Phases for the Eulerian Model)
在欧拉多相流计算中为主相和第二相指定必要的信息和它们的相互作用的说明由下面给出。 Defining the Primary Phase
在欧拉多相流计算中定义主相的步骤与在VOF计算中相同。详细内容见Section 20.6.8.
Defining a Non-Granular Secondary Phase
在欧拉多相流计算中定义非颗粒(即液体或气体)第二相的步骤如下: 1. Select the phase (e.g., phase-2) in the Phase list.
2. Click Set..., and the Secondary Phase panel (Figure 20.6.8) will open.
Figure 20.6.8: The Secondary Phase Panel for a Non-Granular Phase
3. In the Secondary Phase panel, enter a Name for the phase.
4. Specify which material the phase contains by choosing the appropriate material in the Phase Material drop-down
list. 5. Define the material properties for the Phase Material, following the same procedure you used to set the material
properties for the primary phase (see Section 20.6.8). 6. In the Secondary Phase panel, specify the Diameter of the bubbles or droplets of this phase.You can specify a
constant value, or use a user-defined function. See the separate UDF Manual for details about user-defined functions. 7. Click OK in the Secondary Phase panel.
Defining a Granular Secondary Phase
在欧拉多相流计算中定义颗粒第二相的步骤如下:
1. Select the phase (e.g., phase-2) in the Phase list.
2. Click Set..., and the Secondary Phase panel (Figure 20.6.9) will open.
Figure 20.6.9: The Secondary Phase Panel for a Granular Phase
31
3. In the Secondary Phase panel, enter a Name for the phase.
4. Specify which material the phase contains by choosing the appropriate material in the Phase Material drop-down
list. 5. Define the material properties for the Phase Material, following the same procedure you usedgranular phase
(which must be placed in the fluid ma to set the material properties for the primary phase (see Section 20.6.8). For a terials category, as mentioned in Section 20.6.1), you need to specify only the density; you can ignore the values for the other properties, since they will not be used. 6. In the Secondary Phase panel, specify the following properties of the particles of this phase: Diameter
指定颗粒的直径。 You can select constant in the drop-down list and specify a constant value, or select user-defined to use a user-defined function. See the separate UDF Manual for details about user-defined functions. Granular Viscosity
指定颗粒的颗粒粘度的运动部分(?s,kinin Equation 20.4-50)。You can select constant (the default) in the drop-down list and specify a constant value, select yamlal-obrien to compute the value using Equation 20.4-52, select gidaspow to compute the value using Equation 20.4-53, or select user-defined to use a user-defined function. Granular Bulk Viscosity
specifies the solids bulk viscosity (?qin Equation 20.4-8). You can select constant (the default) in the drop-down list and specify a constant value, select lun-et-al to compute the value using Equation 20.4-54, or select user-defined to use a user-defined function. Frictional Viscosity
specifies a shear viscosity based on the viscous-plastic flow (?s,frin Equation 20.4-50). By none in the drop-down list. If you want to include the fric default, the frictional viscosity is neglected, as indicated by the default selection of tional viscosity, you can select Equation constant and specify a constant value, select schaeffer to compute the value using 20.4-55, or select user-defined to use a user-defined function. Angle of Internal Friction
32
s
specifies a constant value for the angle ?used in Schaeffer's expression for frictional viscosity (Equation 20.4-55). This parameter is relevant only if you have selected schaeffer or user-defined for the Frictional Viscosity. Packing Limit
specifies the maximum volume fraction for the granular phase (?s,max). For monodispersed spheres the packing limit is about 0.63, which is the default value in FLUENT. In polydispersed cases, however, smaller spheres can fill the small gaps between larger spheres, so you may need to increase the maximum packing limit. 7. Click OK in the Secondary Phase panel.
Defining the Interaction Between Phases
对颗粒和非颗粒流动,你必须指定在动量交换系数的计算中使用的曳力函数。对颗粒流,你也必须指定颗粒碰
撞的归还系数(restitution coefficients)。为颗粒和非颗粒流动包含可选的升力和虚拟质量力(下面描述)也是可能的。
为指定这些参数,click Interaction... to open the Phase Interaction panel (Figure 20.6.10).
Figure 20.6.10: The Phase Interaction Panel for the Eulerian Model
Specifying the Drag Function
FLUENT允许你为一对相指定曳力函数,步骤如下:
1.Click the Drag tab to display the Drag Function inputs. 2. 对每一对相,从下面相应的列表中选择合适的曳力函数。
(1) Select schiller-naumann to use the fluid-fluid drag function described by Equation 20.4-19. The Schiller and
Naumann model is the default method, and it is acceptable for general use in all fluid-fluid multiphase calculations.
(2) Select morsi-alexander to use the fluid-fluid drag function described by Equation 20.4-23. The Morsi and
Alexander model is the most complete, adjusting the function definition frequently over a large range of Reynolds numbers, but calculations with this model may be less stable than with the other models. (3) Select symmetric to use the fluid-fluid drag function described by Equation 20.4-28. The symmetric model is
recommended for flows in which the secondary (dispersed) phase in one region of the domain becomes the primary (continuous) phase in another. For example, if air is injected into the bottom of a container filled halfway with water, the air is the dispersed phase in the bottom half of the container; in the top half of the
container, the air is the continuous phase
(4) Select wen-yu to use the fluid-solid drag function described by Equation 20.4-40. TheWen and Yu model is
applicable for dilute phase flows, in which the total secondary phase volume fraction is significantly lower than
33
.
that of the primaryphase.
(5) Select gidaspow to use the fluid-solid drag function described by Equation 20.4-42. The Gidaspow model is
recommended for dense fluidized beds. (6) Select syamlal-obrien to use the fluid-solid drag functiondescribed by Equation 20.4-32. The
Syamlal-O'Brien model is recommended for use in conjunction with the Syamlal-O'Brien model for granular viscosity. (7) Select syamlal-obrien-symmetric to use the solid-solid drag function described by Equation 20.4-44. The
symmetric Syamlal-O'Brien model is appropriate for a pair of solid phases. (8) Select constant to specify a constant value for the drag function, and then specify the value in the text field.
(9) Select user-defined to use a user-defined function for the drag function (see the separate UDF Manual for
details). (10) If you want to temporarily ignore the interaction between two phases, select none.
Specifying the Restitution Coefficients (Granular Flow Only)
对颗粒流,你必须为颗粒间的碰撞指定归还系数(eIsin Equation 20.4-44 and essin Equation 20.4-45)。除了为每一对颗粒相之间的碰撞指定归还系数外,你也得为同相颗粒之间的碰撞指定归还系数。 步骤如下:
1. Click the Collisions tab to display the Restitution Coefficient inputs.
2.For each pair of phases, specify a constant restitution coefficient. All restitution coefficients are equal to 0.9 by
default.
Including the Lift Force
对颗粒和非颗粒流,在第二相颗粒、液滴、或气泡中包含升力(Fliftin Equation 20.4-10)的影响是可能的。这些升力作用于颗粒、液滴或气泡主要是由于主相流场中的速度梯度。在大多数情形下,升力与曳力相比是不重要的,因此没必要包含它,如果升力重要(也就是说,如果相很快分离),你可以包含这个影响。
!!注意对大颗粒,升力更重要,但是FLUENT模型假设粒子直径远小于粒子间距离。这样对接近充满的颗粒(closely packed particles)或者小颗粒,包含升力是不合适的。 包含升力影响的步骤如下:
1. Click the Lift tab to display the Lift Coefficient inputs.
2. 对每一对相,从下面相应的列表中选择合适的指定方法。注意,既然作用于颗粒、液滴或气泡的升力主要是由于主
相流场中的速度梯度,你不必为存在于两个第二相间的每对相指定升力系数;只对存在于第二相和主相之间的每对相指定升力系数。
(1) Select none (the default) to ignore the effect of lift forces.
(2) Select constant to specify a constant lift coefficient, and then specify the value in the text field.
(3) Select user-defined to use a user-defined function for the lift coefficient (see the separate UDF Manual for
details).
Including the Virtual Mass Force
对颗粒和非颗粒流,当第二相相对于主相加速时包含存在的虚拟质量力(Fvmin Equation20.4-11)是可能的。当第二相的密度远小于主相的密度时虚拟质量的影响是重要的(也就是对瞬态泡状柱流(transient bubble column))。 包含虚拟质量力的影响,turn on the Virtual Mass option in the Phase Interaction panel. 虚拟质量力的影响被包含在所有第二相内;使它仅为颗粒相是不可能的。
20.6.11 Including Body Force(包含体积力)
在许多情况下,相的运动部分是由于重力的影响。为了包含这个体积力,应在Operating Conditions panel下选择Gravity并且指定Gravitational Acceleration. Define
Operating Conditions...
34
对于VOF计算,你应当在Operating Conditions panel下选择Specified Operating Density,并且在Operating Density 下为最轻相设置密度。(这种排除了水力静压的积累,提高了round-off精度为动量平衡)。如果任何一相都是可压缩的,设置Operating Density为零。
!!对于涉及体积力的VOF 和mixture计算,建议你在Multiphase Model panel下为Body Force Formulation选择Implicit Body Force.这种处理通过解决压力梯度和动量方程中体积力的部分平衡提高了解的收敛。
20.6.12为VOF模型设置时间依赖参数
在FLUENT中,如果你使用依赖时间的VOF公式,volume fraction的一个隐式解或者在每一个时间补或者在每一迭代次数上获得,主要取决你输入的模型。你也可以控制时间步用于volume fraction 的计算。 计算一个依赖时间的VOF解,你必须在Solver面板下选择Unsteady(选择合适的Unsteady Formulation, as discussed in section 22.15.1)。如果你选择了Geo-Reconstruct, Donor-Acceptor, or Euler Explicit 格式。FLUENT将自动为你打开 first-order不稳态公式,因此你自己不必再访问Solver面板。 Define
Models
Solver...
在Multiphase Model面板中,对于时间依赖的计算有两种输入:
★ 默认情形,FLUENT将求解volume fraction方程一次在每一时间步上。这意味着出现在其他输运方程中的对流流
量系数不必在每一迭代层次上完全更新,因为volume fraction field在两次迭代之间不改变。
如果你想让FLUENT在一个时间步的每一迭代步上求解一次volume fraction equation,应在VOF Parameters打开Solve VOF Every Iteration。当FLUENT每次迭代是求解这些方程时,其他输运方程的对流流量系数将会在基于每次迭代更新volume fraction的基础上更新。
通常,当其他流动变量在每一时间步收敛时如果你预计接触面的位置将发生变化,你应当选择Solve VOF Every Iteration. 例如,当采用大的时间步长并希望达到稳态解,这种情形就会发生。如果采用小的时间步长,在每一迭代上执行求解volume fraction的额外的工作是不必要的。因此你可以让这些选项关闭。在两种选择中这种更可靠,并且在每一时间步上需要更少的计算付出与第一中选择相比。
!!如果你使用的是滑动网格(sliding meshes),使用Solve VOF Every Iteration会得到精度更高的结果,但是得付出更多的计算代价。
★ 当FLUENT执行时间依赖的VOF计算,用于volume fraction 计算的时间步长不必和用于其他输运方程的时间步长
相同。 FLUENT将会自动地为VOF调整时间步长,基于你为靠近自由表面输入的允许的最大Courant Number. Courant
Number是一个无量纲数,它是与计算流体单元通过控制容积的时间特性的时间步长的比值:
在流体接触面附近的区域,FLUENT通过外出流量的和分开各个单元的控制容积。作为结果的时间代表了流体流出
控制单元变为空所用的时间。这些时间中最小的作为流体单元通过控制容积的特性时间,如上所述。基于这个时间和你输入的允许的最大的Courant Number,在使用 VOF计算时时间步被计算出来。例如,如果最大允许的Courant number是0.25(默认),时间步长将会至多被选为任何靠近接触面的的最小通过时间的四分之一。 注:当采用隐式的求解方案时,这些输入是不要求的。
20.6.13为Eulerian多相流计算选择紊流模型 如果你使用Eulerian模型求解紊流,你必须在section 20.4.7描述的三种紊流模型中选择一种模型(在Viscous Model panel, Figure 20.6.11)。
Figure 20.6.11: The Viscous Model Panel for an Eulerian Multiphase Calculation
35
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库Chpter20通用多相流模型(General Multiphase Models) 打印稿(7)在线全文阅读。
相关推荐: