较普遍的,如果两颗星的质量相差悬殊,如m<<M,则r=L,R=O,T?2?以把大质量星看作静止的,小质量星围绕大质量星运动。
l3GM,这是可
【例题】两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。现测得两星中心距离为R,其运动周期为T,求两星的总质量。
★解析:设两星质量分别为M1和M2,都绕连线上O点作周期为T的圆周运动,星球1和星球2到O的距离分别为l1和l2。由万有引力定律和牛顿第二定律及几何条件可得M1:
G
2?M1M2=M1()2 l1 2TR∴M2=
4?Rl1GT222
对M2:G
2?M1M2=M2()2 l2 2TR224?Rl2∴M1=
2GT两式相加得 M1+M2=
4?RGT222(l1+l2)=
4?RGT223。
【例题】在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如图所示。此时两小球到转轴的距离r1与r2之比为( )
r1 r2 m1 m2 A.1∶1 C.2∶1
B.1∶2 D.1∶2
★解析:两球向心力、角速度均相等,由公式 F=mω2r 得r∝答案:D
【例题】宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用,已观测到稳定的三星系统存在两种基本的构成形式:一
1m,则
r1r2=
m2m1=
12。
- 11 -
种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,设每个星体的质量均为m。
(1)试求第一种形式下,星体运动的线速度和周期;
(2)假设两种形式下星体的运动周期相同,第二种形式下星体之间的距离应为多少? ★解析:
类型题: 人造卫星的一组问题 【例题】“神舟三号”顺利发射升空后,在离地面340km的圆轨道上运行了108圈。运行中需要多次进行 “轨道维持”。所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行。如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能变化情况将会是
A.动能、重力势能和机械能都逐渐减小
B.重力势能逐渐减小,动能逐渐增大,机械能不变 C.重力势能逐渐增大,动能逐渐减小,机械能不变 D.重力势能逐渐减小,动能逐渐增大,机械能逐渐减小
★解析:由于阻力很小,轨道高度的变化很慢,卫星运行的每一圈仍可认为是匀速圆周运动。由于摩擦阻力做负功,根据机械能定理,卫星的机械能减小;由于重力做正功,根据势能定理,卫星的重力势能减小;由v?GMr?1r可知,卫星动能将增大。这也说明该过程中
重力做的功大于克服阻力做的功,外力做的总功为正。答案选D
【例题】 如图所示,某次发射同步卫星时,先进入一个近地的圆轨道,然后在P点点火
- 12 -
加速,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P,远地点为同步轨道上的Q),到达远地点时再次自动点火加速,进入同步轨道。设卫星在近地圆轨道上运行的速率为v1,在P点短时间加速后的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在Q点短时间加速后进入同步轨道后的速率为v4。试比较v1、v2、v3、v4的大小,并用小于号将它们排列起来______。
Q v3 v1 v4 P v2 ★解析:根据题意在P、Q两点点火加速过程中,卫星速度将增大,所以有v2>v1、v4>v3,而v1、v4是绕地球做匀速圆周运动的人造卫星的线速度,由于它们对应的轨道半径r1< r4,所以v1>v4。把以上不等式连接起来,可得到结论:v2>v1>v4>v3。(卫星沿椭圆轨道由P→Q运行时,由于只有重力做负功,卫星机械能守恒,其重力势能逐渐增大,动能逐渐减小,因此有v2>v3。)
【例题】发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3。轨道1、2相切于Q点。轨道2、3相切于P点(如图),则当卫星分别在1,2,3,轨道上正常运行时,以下说法正确的是( )
P 1 2 3 Q A.卫星在轨道3上的速率大于在轨道1上的速率 B.卫星在轨道3上的角速度小于在轨道1上的角速度
C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度 D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度
★解析:从动力学的角度思考,卫星受到的引力使卫星产生运动的加速度(Fn?man),所以卫星在轨道1上经过Q点时的加速度等于它在轨道2上经过Q点时的加速度,卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度。必须注意,如果从运动学的角度思考(an?v2r??r),由于卫星在不同的轨道上经过相同点时,不但线速度、角
2速度不同,而且轨道半径(曲率半径)不同,所以不能做出判断。案:B、D
【例题】 欧洲航天局用阿里亚娜火箭发射地球同步卫星。该卫星发射前在赤道附近(北纬5°左右)南美洲的法属圭亚那的库卢基地某个发射场上等待发射时为1状态,发射到近地轨道上做匀速圆周运动时为2状态,最后通过转移、调试,定点在地球同步轨道上时为3状态。将下列物理量按从小到大的顺序用不等号排列:①这三个状态下卫星的线速度大小______;
- 13 -
②向心加速度大小______;③周期大小______。
★解析:①比较2、3状态,都是绕地球做匀速圆周运动,因为r2
类型题: 卫星的追及问题 【例题】如右图所示,有A、B两个行星绕同一恒星O做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星第一次相遇(即两行星距离最近),则( BD )。
A.经过时间t=T2+T1,两行星将第二次相遇 B.经过时间t?C.经过时间t?D.经过时间t?T1T2T2?T1,两行星将第二次相遇
TT2122,两行星第一次相距最远 ?T1?T1T1?T22,两行星第一次相距最远
【例题】A、B两行星在同一平面内绕同一恒星做匀速圆周运动,运行方向相同,A的轨道
半径为r1,B的轨道半径为r2,已知恒星质量为m?,恒星对行星的引力远大于得星间的引力,两行星的轨道半径r1<r2。若在某一时刻两行星相距最近,试求:
(1)再经过多少时间两行星距离又最近? (2)再经过多少时间两行星距离最远?
★解析:(1)A、B两行星如右图所示位置时距离最近,这时A、B与恒星在同一条圆半径上,A、B运动方向相同,A更靠近恒星,A的转动角度大、周期短,如果经过时间t,A、B与恒星连线半径转过的角度相差2π的整数倍,则A、B与恒星又位于同一条圆半径上,距离最近。
解:(1)设A、B的角速度分别为ω1、ω2,经过时间t,A转过的角度为ω1t,B转过的角度为ω2t。A、B距离最近的条件是: ω1t-ω2t=n?2?(n?1,2,3?)。 恒星对行星的引力提供向心力,则:
Gm?mr2?mr?,即??Gm?3r12Gm?r3,
Gm?r23由得得出:?1?
,?2?,
- 14 -
求得:t?2?nGm??3r1Gm?3r2(n?1,2,3?)。
(2)如果经过时间t?,A、B转过的角度相差π的奇数倍时,则A、B相距最远,即
?1t???2t??(2k?1)?(k?1,2,3?)。
故t??(2k?1)??1??2。把ω1、ω2代入得:
t?(2k?1)?Gm??3r1Gm?3r2(k?1,2,3?)
点评:太阳系有九大行星,它们之间有相对运动,如要知道哈雷彗星下次光顾地球是什么时间,就要分析两运动间的角速度关系,本题关键是正确写出两行星相距离最近和相距最远的条件。
类型题: 数学知识的运用 物理是以数学为基础的。合理运用数学知识,可以使问题简化。甚至在有的问题中,数学知识起关键作用。
1.用比值法求解有关问题
【例题】假设火星和地球都是球体,火星的质量为M火和地球质量M地之比M火/M地=p,火星半径R火和地球半径R地之比R火/R地=q,那么火星表面重力加速度g火和地球表面重力加速度g地之比为( A )
A.
pq2 B.pq2
C.
pq D.pq
2.割补法的运用
【例题】如图所示,在距一质量为M、半径为R、密度均匀的球体中心2R处,有一质量为m的质点,M对m的万有引力的大小为F。现从M中挖出一半径为r的球体,如图,OO′=R/2。求M中剩下的部分对m的万有引力的大小。
o′ r
★解析:根据万有引力定律,F?GMm(2R)2o m
,挖去的球体原来对质点m的引力为
F??M?m(1.5R)2,而
MM??Rr33。所以剩下的部分对质点m的引力为
F?F??9R?16r9R333F。
- 15 -
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库高三物理一轮复习精品教案:第5章 万有引力定律 人造地球卫星(3)在线全文阅读。
相关推荐: