77范文网 - 专业文章范例文档资料分享平台

第三次数学危机(8)

来源:网络收集 时间:2019-06-17 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

成功。希尔伯特把它列入自己著名的23个问题的头一个。希尔伯特本人也曾经用了许多精力证明它,并且在192~—1926年宣布过证明的大纲,但终究未能成功。这个问题终究悬而未决。

1930年哥德尔完成了他的两大贡献以后,曾说过“现在该轮到集合论了”。他从1935年起就开始研究连续统假设及广义连续统假设。这一次他又出人意料地证明了ZF和GCH是协调一致的,不过当然要假设ZF本身也是协调的,虽然这一点一直没有得到证明。 哥德尔应用可构造性公理证明ZFC和ZFC+GCH的相对无矛盾性,他用可构造集的类L作为ZFC的模型。1963年7月,美国年轻数学家科恩发明了影响极为重大的力迫法,并证明连续统假设的否定命题成立,这样一来CH在ZF中既不能证明也不能否定。

4.3可构成性公理

哥德尔证明选择公理和连续统假设协调性的方法是定义一种类型的集合,叫做可构成集。假如把集合论中集合的概念完全用可构成集合的概念来理解,那么集合论中的一些概念就会有相应的改变。但是有一些概念不会改变,这种概念我们称为绝对的,特别是可构成性这个概念是绝对的。所以“一切集合是可构成的”,这称为可构成性公理。

可构成性的概念非常重要,表现在:1、可构成性公理与ZF的其他公理是协调的;2、可构成性公理蕴涵连续统假设和选择公理;3、如果可测基数存在,则不可构成集合存在,这是斯科特1961年证明的。随后,罗巴通在他1964年的博土论文中证明可测基数的存在,蕴涵整数不可构成集合的存在性,后来他又证明可测基数的存在蕴涵只有可数无穷多个整数的可构成集合。

4.4 马丁公理

马丁公理是1970年由马丁等人提出来的,它与ZFC的其他公理完全不同,不象一个“真”的公理,但是由它可以推出数学上重要的结果。马丁公理是连续统假设的推论,因此可以看成是弱连续统假设。

马丁公理在数学上有一系列的重要应用。特别重要的是,舍拉在1974年证明怀特海猜想在ZFC下是不可判定的。同样,许多拓扑学问题也有类似情况。

4.6 大基数公理

连续统假设及广义连续统假设反映了最理想的大基数产生的方法,也就是一个接一个由幂集的基数产生出来。但是,这种理想的情况现在还无法证明,而与它不同或矛盾的情形也不可能得到否定。因此,这种种特殊大基数的存在性能得到更加特殊的结果,而且对数学本身产生了不可忽视的影响。

36

虽然这些大基数极为玄乎,可是由它们可以推出许多重要的数学结果。因此我们不得不重视它,而它们的存在性作为公理就是大基数公理。可以料到这些大基数公理同原来的一些公理是矛盾的。比如,可构造公理就蕴涵可测基数不存在。

大基数公理对数学问题的重要性可以由下面问题的解决看出:拓扑学中一个著名的几十年末解决的正规莫尔空间猜想归结为可测基数的存在问题,而象过去局限于ZFC系统的证明是没有希望的。

4.6决定性公理

决定性公理是与描述集合论密切相关的公理,它涉及到自然数列的集合是否能够通过某种方法决定。

决定性公里的基本问题是:什么集合是可决定的?经过许多人的努力,马丁在1975年证明,数学中最常用的保莱尔集合是可决定的。下一个猜想是证明所有解析集合(即二维保莱尔集合的射影集合)是可决定的,但这个猜想与哥德尔的可构成性公理相矛盾。上面讲过,可构成性公理是与ZFC是相容的,因此这个猜想无法在集合论中证明。这样一来,它本身可以成为一个新公理。

比这个公理更加激进的公理是:R的所有子集合都是决定的。这个公理太过激烈了,以致很难为“真”,因为它首先同选择公理有矛盾。不过,由这个决定性公理却能推出一系列有趣的数学事实;其中最突出的是,由它可推出所有实数集合都是勒贝格可测的。这样一来,许多数学成为没有意思的了。因此,数学家还是不太想要这个太强的公理。可是,它带来的一系列问题仍有待解决。

第六章:数学与哲学(上)

从1900年到1930年左右,数学的危机使许多数学家都卷入到一场大辩论当中。他们看到这次危机涉及数学的根本,必须对数学的哲学基础加以严密的考察。在这场大辩论中,原来的不明显的意见分歧扩展成为学派的争论,以罗素为代表的逻辑主义,以布劳威尔为代表的直觉主义,以希尔伯特为代表的形式主义三大学派应运而生。他们在争论过程中尽管言语尖刻,好象势不两立,其实他们各自的观点在争论过程中都吸收了对立面的看法而有很多变化。

1930年,哥德尔不完全性定理的证明暴露了各派的弱点,哲学的争论冷淡了下去。此后各派力量沿着自己的道路发展演化。尽管争论的问题远未解决,但大部分数学家并不太关心哲学问题。近年来数学哲学问题又激起人们的兴趣,因此我们有必要了解一下数学哲学的来龙去脉。

1、逻辑主义

37

罗素在1903年出版的《数学的原理》中对于数学的本性发表了自己的见解。他说:“纯粹数学是所有形如‘p蕴涵q’的所有命题类,其中p和q都包含数目相同的一个或多个变元的命题,且p和q除了逻辑常项之外,不包含任何常项。所谓逻辑常项是可由下面这些对象定义的概念:蕴涵,一个项与它所属类的关系,如此这般的概念,关系的概念,以及象涉及上述形式一般命题概念的其他概念。除此之外,数学使用一个不是它所考虑的命题组成部分的概念,即真假的概念。”

这种看法是罗素自己最早发表的关于逻辑主义的论点。这种看法在以前也不同程度被戴德金、弗雷格、皮亚诺、怀特海等人表达过。戴德金在1872年出版了《连续性及无理数》一文,在这篇文章中,他把有理数做为已知,进而分析连续性这个概念。为了要彻底解决这个问题,必须考虑有理数乃至自然数产生的问题。他认为应该建立在逻辑基础上,但没有实行。

弗雷格在1884年《算术基础》中认为每个数是一个独立的对象。他认为算术规则是分析判断,因此是先验的。根据这点,算术只是逻辑进一步发展的形式,每个算术定理是一个逻辑规律。把算术应用到自然现象上的解释只是对所观察到的事实的逻辑加工,计算就是推理。数字规律无须实践检验即可应用于外在世界,而在外在世界、空间总体及其内容物,并没有概念、没有数。因此,数字规律实际上不能应用于外在世界,这些规律并不是自然规律。不过它们可以应用于对外在世界中的事物为真的判断上,这些判断即是自然规律。它们反映的不是自然现象之间的关系,而是关于自然现象的判断之间的关系。

早在罗素发现悖论之前,他在写作《数学的原理》时就企图把数学还原为逻辑,由于发现悖论,这个计划遭到了困难。他发现消除悖论的方法之后,又开始具体实现他的计划,这就是他和怀特海合著的《数学原理》。

既然罗素、怀特海的《数学原理》原来的目的是企图把数学建立在逻辑的基础上,因此,书一开始就提出几个不加定义的概念和一些逻辑的公理,由此推出逻辑规则以及数学定性。 不加定义的概念有基本命题、命题函数、断言、或、否(非);这里讲的命题是指陈述一件事实或描述一种关系的一个语句,如“张三是人”,“苹果是红的”等等,由这些概念可定义逻辑上最重要的概念“蕴涵”。

要想由逻辑推出数学,第一步是推出“数”来,这件事皮亚诺及弗雷格都做了。罗素在消除悖论之后,成功地用“类”来定义1。这个过程极为繁琐费力,一直到《数学原理》第一卷的363页才推出“1”的定义,而第二卷费了很大力气证明了n×m=m×n。

在《数学的原理》及《数学原理》中,罗素的目标在于证明“数学和逻辑是全等的”这个逻辑主义论题,它可以分析为三部分内容:

1、每条数学真理都能够表示为完全用逻辑表达或表示的语言。简单来讲,即每条数学真理都能够表示为真正的逻辑命题。

2、每一条真的逻辑命题如果是一条数学真理的翻译,则它就是逻辑真理。

3、每条数学真理一旦表示为一个逻辑命题,就可由少数逻辑公理及逻辑规则推导出来。

38

这三方面不完全一样,罗素只是分别在各处用一条或两条表示过逻辑主义。由于哥德尔的不完全定理,3是错的,但是还可以坚持1和2。

罗素认为逻辑主义的许多主要论点不是来自他本人,弗雷格就曾明确地表示过一些逻辑主义的观点。但是,逻辑主义观点尽管受到批判,罗素本人还一直坚持。在三十年代以后,还是有许多人发展逻辑主义。

逻辑主义从—开始就遭到批评,“因为如果数学只是一套逻辑演绎系统,那么它怎么可能反映广泛的自然现象呢?它又怎样能够有创造力呢?它又怎样能够产生新观念呢?”用维特根斯坦的话说,数学就是同语反复(重言式),结不出任何新知识。

罗素悖论的出现,使得这一派遭到的攻击更大。彭加勒挖苦他们“逻辑主义的理论倒不是不毛之地,什么也不长,它滋长矛盾,这就更加让人受不了”。罗素—怀特海用了几年时间写出了《数学原理》论证了自己的观点,仍不免遭到讥讽。彭加勒挖苦他们费很大力气去定义1,说“这是一个可钦可佩的定义,它献给那些从来不知道1的人”,别人也说这一套完全是中世纪的教条。更有人指出这种方法的人为性、烦琐性。尤其是可化归公理,显然是硬加上的,没有任何自然之处。尽管如此,逻辑主义总算还能自圆其说。

对逻辑主义致命打击的是哥德尔的不完全性定理,它证明了从逻辑并不能推出算术的正确性来,显然把数学全部化归为逻辑彻底失败了。但是,罗素等人的历史功绩是不可磨灭的,他们为数学奠定了逻辑基础。在一段时期内,《数学原理》是一部引导数学逻辑家的经典,至今它还有一定的意义。

逻辑主义也不是后继无人,英国的拉姆塞、美国的奎因都对逻辑主义作了进一步的发展。

2、直觉主义

直觉主义有着长远的历史,它植根于数学的构造性当中。古代数学大多是算,只是在欧几里得几何学中逻辑才起一定作用。到了十七世纪解析几何和微积分发明之后,计算的倾向大大超过了逻辑倾向。十七、十八世纪的创造,并不考虑逻辑的严格,而只是醉心于计算。 十九世纪初,三个力量出现了,一个是解五次代数方程碰钉子,需要考虑存在性定理。一个是非欧几何不矛盾,是逻辑而不是直觉在起作用。一个是数学分析不严格,产生荒谬的结果。在新的矛盾面前出现一些非构造性结果,也考虑一些无穷的问题。这时追求严密与追求实用构造两种倾向都有增长,不过一般数学家维持着微妙的平衡。

到了十九世纪末,集合论的出现激起这两方面的尖锐斗争。于是出现极端的构造主义者,象克洛耐克否认无理数存在,否认连续函数,他认为任何东西部要有构造步骤或判断准则,但即使他本人的工作也不符合他自己的要求。

法国数学家彭加勒等人是半直觉主义者,有人称为法国经验主义者。他们反对实无穷,反对实数集合,反对选择公理,主要因为他们认为根本不能进行无穷的构造。

现代直觉主义真正的奠基人是布劳威尔,他于1881年2月27日生于荷兰奥弗西。1897年进入阿姆斯待丹大学学习,一直到1904年,他很快掌握了当时的数学并且发表关于几何

39

第一个结果。他多少受曼诺利的影响,关心当时的基础问题,在1907年博士论文中阐述自己对数学基础问题的观点。

布劳威尔是从哲学中得出自己观点的,基本的直觉是按照时间顺序出现的感觉,而这形成自然数的概念。这倒不是新鲜的,他认为数学思维是头脑中的自由构造,与经验世界无关,只受基本数学直觉为基础的限制,在这方面他是不同于法国经验主义者的。数学概念进入人脑是先于语言、逻辑和经验的,决定概念的正确性是直觉,而不是经验及逻辑。这些充分暴露了他唯心主义和神秘主义的思想倾向。

布劳威尔认为数学直觉的世界和感觉的世界是互相对立的,日常的语言属于感觉世界,不属于数学。数学独立于语言存在,而逻辑是从属于语言的,它不是揭露真理的工具,而是运用语言的手段。正因为如此,数学中最主要的进展不是靠逻辑形式完美化而得到,而是靠基本理论本身的变革。

布劳威尔认为逻辑规律并不对数学有什么约束作用,数学是自由的,不一定遵守什么逻辑规则。他认为经典逻辑是从有限集合的数学抽象出来,没有理由运用到无穷集合。1908年,他反对把排中律运用于无穷集合上,因为有穷集合可以逐个检查,而无穷集合则办不到,因此存在不可断定真假的第三种情况,就是说有既不可证明,又非得要证明的命题。 1908年到1913年,布劳威尔主要从事拓扑学的研究,他运用单形逼近的方法证明了维数的拓扑不变性,这在数学上是个了不起的成就,是极重要的拓扑方法。他在李群、几何等方面也有出色的工作,不过很快他又转向基础研究。

布劳威尔象康德和彭加勒一样,认为数学定理是先验综合真理。他在1912年的阿姆斯特丹大学就职演说中,他承认由于非欧几何的发展,康德的空间学说不可信。但他同弗雷格和罗素相反,仍然坚持康德的观点,算术是从对时间的直觉导出的。由于现代数学是建立在算术基础上的,所以整个数学也是如此。正是时间单位的序列产生序数的概念,而连续统[0,1]只是不可用新单位穷尽的居间性,他认为几何学也依赖于这种直觉。他认为除了可数集合之外,没有其他集合,所以ω以上的超穷数都是胡说八道,象 0与 1之间所有实数的集合是毫无意义的。这点他在1908年罗马召开的国际数学家大会上讲过,数学无穷集合只有一个基数,即可数无穷。

1909年他同希尔伯特通信,指出形式主义和直觉主义的争论焦点。1912年说到这个问题之后,他一直到1917年才又开始这方面的论战。从这时起到二十年代末他发表一系列的文章,开始建立一个不依靠排中律的集合论,接着又建立构造的测度论及函数论,这是他从消极的否定转变为积极的构造。同时他试图使数学家相信排中律导出矛盾。他运用了扇定理,这个定理及选择序列、散集等是他的直觉主义数学的独创。

三十年代初期由于哥德尔的工作,许多数学家开始重视直觉主义。外尔早在1920年左右就表示效忠于直觉主义,从而激起希尔伯特的极大愤怒。他吸收了直觉主义一些思想,开始用有限主义方法来完成证明论方案,企图一劳永逸地解决基础问题,不料没能成功,于是还得求助于无穷。

40

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库第三次数学危机(8)在线全文阅读。

第三次数学危机(8).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/660734.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: