77范文网 - 专业文章范例文档资料分享平台

第三次数学危机(5)

来源:网络收集 时间:2019-06-17 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

只牵涉到谓词和变元的关系,它们不同级便可以消除悖论了。但是语义悖论要涉及到谓词本身,非得分支类型论不可。

虽然类型论可以消除悖论,但是缺点很多,非常烦琐,特别是可化归公理的引进,具有很大的任意性,因此受到很多批评。不过它的历史作用还是很大的,也借助它,罗素才实现他的逻辑主义纲领,完成前人没有完成的计划。

罗素和怀特海的《数学原理》出版之后,许多人对于其系统进行简化与改进。特别是哥德尔及塔尔斯基。1940年,丘奇给简单类型论一个新的表述。类型论至今仍是数理逻辑中主要的系统之一。

4、策梅罗的公理集合论

1908年,策梅罗采用把集合论公理化的方法来消除罗素悖论。他的著名论文《关于集合论基础的研究》是这样开始的:“集合论是这样一个数学分支,它的任务就是从数学上以最为简单的方式来研究数、序和函数等基本概念,并借此建立整个算术和分析的逻辑基础;因此构成了数学科学的必不可少的组成部分。但是在当前,这门学科的存在本身似乎受到某种矛盾或者悖论的威胁,而这些矛盾和悖论似乎是从它的根本原理导出来的。而且一直到现在,还没有找到适当的解决办法。面对着罗素关于‘所有不包含以自己为元素的集合的集合’的悖论,事实上,它今天似乎不能再容许任何逻辑上可以定义的概念‘集合’或‘类’为其外延。康托尔原来把集合定义为我们直觉或者我们思考的确定的不同的对象做为一个总体。肯定要求加上某种限制,虽然到现在为止还没有成功地用另外同样简单的定义代替它,而不引起任何疑虑。在这种情况下,我们没有别的办法,而只能尝试反其道而行之。也就是从历史上存在的集合论出发,来得出一些原理,而这些原理是作为这门数学学科的基础所要求的。这个问题必须这样地解决,使得这些原理足够地狭窄,足以排除掉所有的矛盾。同时,又要足够地宽广,能够保留这个理论所有有价值的东西。”

在这篇文章中,策梅罗实行的计划,是把集合论变成一个完全抽象的公理化理论。在这样一个公理化理论中,集合这个概念一直不加定义,而它的性质就由公理反映出来。他不说什么是集合,而只讲从数学上怎样来处理它们,他引进七条公理:决定性公理(外延公理)、初等集合公理(空集公理、单元素公理、对集公理)、分离公理、幂集公理、并集公理、选择公理、无穷公理(稍稍改变一下原来形式)。

实际上策梅罗的公理系统Z(公理1至7)把集合限制得使之不要太大,从而回避了比如说所有“对象”,所有序数等等,从而消除罗素悖论产生的条件。策梅罗不把集合只简单看成一些集团或集体,它是满足七条公理的条件的“对象”,这样排除了某些不适当的“集合”。特别是产生悖论的原因是定义集合的所谓内函公理组,如今已换成弱得多的分离公理组。

策梅罗首次提出的集合论公理系统,意义是非常重大的。但是,其中有许多缺点相毛病。比如:公理3的确定性质的含义并不清楚,他的公理没有涉及逻辑基础,选择公理有许多争

21

议等等。后来经许多人加以严格处理及补充,才成为严格的公理系统,即ZF或ZFS系统。其中Z代表策梅罗,F代表弗兰克尔,S代表斯科兰姆。这里面特别是有斯科兰姆和弗兰克尔进行的改进。但是一般的ZF中往往不包括选择公理,如果加进选择公理则写为ZFC(AC是Axiom of Choice的缩写,有时简写为C)

策梅罗的公理系统发表之后,遭到各方面的批评。特别是斯科兰姆1922年在8月份在赫尔辛基召开的第五届斯堪的纳维亚数学家大会上做了公理化集合论的报告,他对策梅罗公理系统提出了八点批评:

1、为了讨论集合,我们必须从对象“域”开始,也就是用某种方法构成的域;2、策梅罗关于确定的命题要有一个定义使得它精确化;3、在所有完全的公理化中,集合论的概念不可避免地是相对的;4、策梅罗的公理系统不足以提供通常集合论的基础;5、当人们打算证明公理的无矛盾时,谓语句所引起的困难;6、对象域B的不唯一性;7、数学归纳法对于抽象给出的公理系统的必要性;8、选择公理的问题。

另一方面,许多人对策梅罗公理集合论提出许多改进意见。首先Z太狭窄不足以满足对集合论的合法需要,有许多集合不能由它产生出来,也不能够由此造出序数的一般理论和超穷归纳法。为了弥补这个缺陷,弗兰克尔加进一个公理组即代换公理。另外,弗兰克尔还把公理以符号逻辑表示出来,形成了现在通用的ZF系统。

一般认为经过弗兰克尔改进的策梅罗集合论公理系统,再加上选择公理是足够数学发展所需的,但是还需要加一条限制性的公理,即除了满足这些公理的集合之外没有其他的集合。采取这样一个公理是出于一个悖论的启发,这个悖论最初是法国数学家米里马诺夫在1917年提出的。这个悖论涉及所谓基础集合,为了排除这种集合,冯·诺依曼引进公理9(基础公理),从而消除了上述悖论。

这样定义的集合论(ZF)中,虽说与连续统假设有关的“幂集公理”不留下疑点,但正因为不包含有很多问题的“选择公理(AC)”,所以纯粹性很高。虽然至今还不能给出ZF集合论的无矛盾性的证明,可是它已经没有必须大书特书的难点了。

常用的集合论公理系统除了ZF之外,还有由冯·诺依曼开创并由贝耐斯、哥德尔加以改进、简化的集合论公理系统—NBG系统(有时简称为BG系统,N代表冯·诺依曼,B代表贝耐斯,G代表哥德尔)。

大数学家冯·诺依曼在他年青的时候,开辟了公理化集合论的第二个系统。他第一个主要的数学研究就是重新考虑策梅罗—弗兰克尔对于集合论的公理化。在他的博士论文中论述了一般集合论的公理构造,这篇论文是他1925年用匈牙利文写的。但是他后来在两篇重要文章中用德文发表了其中主要的思想,一篇是《集合论的一种公理化》,另二篇是《集合论的公理化》。第一篇文章中他给出了自己的公理化体系,在第二篇文章中他详细地证明了怎样由他的公理系统导出集合论。

冯·诺依曼的处理方法是策梅罗公理化的推广。原来的理论基本上保持了下来,但是形式有所变化。表面看来新公理和旧公理非常不一样,但是主要是使用的语言有所变化。通常

22

表示集合论的语言有两种,一种是集合和它的元素的语言,一种是函数及其变项的语言,这两种语言是等价的。

策梅罗用的主要是集合的语言,不过他也隐含地用函数的语言。而在弗兰克尔改进的理论里,这点就更加明显。冯·诺依曼选用的语言完全与策梅罗相反,他一开始就用变项和函数来叙述他的公理。

但是策梅罗—弗兰克尔和冯·诺依曼两个公理系统主要差别还不是语言的问题,而是如何在朴素集合论中排除悖论的方式。在策梅罗—弗兰克尔系统中,是通过限制集合产生的方式来达到这个目的的,他们把集合只限制在对于数学必不可少的那些集合上。但是从冯·诺依曼看来,这样施加限制有点不必要地过分严格,使得数学家在论证过程中失掉一些有时有用的论证方式,而这些论证方式似乎是没有恶性循环的。于是冯·诺依曼采取一个比策梅罗—弗兰克尔更广的概念,而同时却消除任何产生悖论的危险。

按照冯·诺依曼的想法,悖论的产生也许是因为过大的总体所引起,更准确来讲,就相当于所有集合的集合,所以冯·诺依曼就觉得只要让这类总体成为元素,就可以避免悖论。 在冯·诺依曼的公理系统中,悖论是通过下面的方法来避免的;承认有两种类型的类,即集合和固有类。集合可以是其他类的成员,而固有类则不容许是其他类的成员。在这个公理系统中,我们就有三个原始概念:集合,类,属于关系。所以NBG中的定理不一定是ZF中的定理,不过可以证明ZF中的每个合适公式在ZF中可证明当且仅当在NBG中可证明。这样看来NBG是ZF的一个扩充,数学家可以根据自己不同的需要来选用自已认为方便的公理系统。比如哥德尔是在NBG公理系统中考虑选择公理及广义连续统假设的相对无矛盾性,而科亨则是在ZF公理系统中考虑选择公理及连续统假设的独立性。除了这两个最重要的集合论公理系统之外,还有好几个公理系统,但是它们的用途远不如ZF和NBG系统了。 尽管集合论公理系统建立起来,并得到广泛承认,但仍然存在许多问题,例如:不可达基数和序数是不是存在?;连续统假设是否能够证明;公理系统的协调性和独立性,??。从三十年代之后,为了解决这些问题,公理集合论掀开了新的一页。

第四章:哥德尔的发现—意想不到的结果

在数理逻辑的历史上,哥德尔的工作起着承前启后的作用。1928年希尔伯特在意大利波伦那召开的国际数学家大会上提出的四个问题,很快就被哥德尔原则上解决了。尤其是他的不完全性定理,把人们引向一种完全不同的境界,从此数理逻辑开始了一个新的时代。 在这之前,数学家期望数学有一个既广阔又严格的基础,在这个基础上数学家可以放心地去干他们愿意干的事。哥德尔的不完全性定理使这种想法破灭了。悖论所造成的危机虽然可以暂时回避,然而想从原则上一揽子解决是毫无希望的。从此之后,数学家只满足于使用集合论一些最简单的结果,而对更深入的数理逻辑与数学基础问题则不那么关心注意了。

23

同时,由于哥德尔在证明中发展的一些技术,也使数理逻辑成为一门具有自己独立技术和方法的数学分支。现在的数理逻辑,不管是公理集合论、模型论还是证明论、递归论都已经变得十分专门。就象代数拓扑学、算子代数、随机过程等学科,对于非本行专家来说,简直是难以理解的。

1、哥德尔小传

库尔特·哥德尔于1906年4月28日出生在奥匈帝国属下的布瑞尼(今天的布尔诺,这里出过另一位伟大人物遗传学之父孟德尔),他的父母是德国人。与一般人推测不同,他并没有犹太血统。他在家乡上了四年国民学校和八年德国国立中学。1924年中学毕业后,他进入维也纳大学哲学系,先是攻读物理,后于1926年转而攻读数学,这恐怕是出于他对精密性和严格性过分偏爱的缘故。当时的维也纳大学有不少有国际声誉的数学家,如曾解决过希尔伯特的一些猜想的数论专家费特万格勒,泛函分析的创始人之一哈恩与拓扑学家门格尔等。大学时他对费特万格勒的数论课很有兴趣,这同他后来的工作有很大关系,比如他应用孙子定理来构造由加法与乘法表出的原始递归函数。

上大学时,哥德尔对哲学也很有兴趣,实际上对哲学的探索始终贯穿着他的一生。他听哲学教授的讲课,特别是经常参加维也纳小组的活动。二十世纪最主要的哲学流派——逻辑实证主义当时刚刚开始他们的事业,哥德尔赞成以施里克为首的这个学派的分析方法,即用数理逻辑来对哲学及科学概念进行分析。但是他也一直不同意他们否定客观实在性,及认为形而上学命题是无意义命题等基本观点。不过,他的哲学观点也促使他对于数理逻辑进行深入的钻研。

当时数理逻辑的经典著作是罗素和怀特海的《数学原理》,这三卷满是符号的大书,恐怕只有极少数人读过。1928年,希尔伯特和阿克曼合著的《理论逻辑纲要》出版,这是一本论述简明、清晰,概括性强的好书,对哥德尔的启发性很大。书中明确提出一个尚未解决的问题——狭义谓词演算的完全性问题。哥德尔很快解决了这个问题,把结果写成博士论文,成为他一生事业的开端。

1929年秋天,他进行答辩。1930年2月得到批准取得博士学位。1930年夏天,哥德尔开始研究希尔伯特计划,他想证明分析的无矛盾性。9月,他到东普鲁士哥尼斯堡去参加科学会会议,许多著名数学家如希尔伯特、冯·诺依曼、海丁、卡尔纳普都参加了这次会议。希尔伯特在会上做了题为“逻辑和对自然的认识”的著名演说,他乐观地宣称:“我们必须知道,我们将会知道”。可是,就在这个会上哥德尔宣布了他的第一不完全性定理。不久,他又证明了第二不完全定理。这个结果毫无疑义对希尔伯特计划是莫大的打击。 1931年哥德尔在维也纳大学当助教,这篇文章成为就职论文而受到了很高的评价。从1933年到1938年,他在维也纳大学当讲师。1932年他到过哥丁根,见到过爱米·诺特、西格尔、甘岑等人。他没见到早逝的天才厄布朗,但他们交换过信件,厄布朗的信中有最早的递归函数想法。但是厄布朗只收到哥德尔一封信。

24

1933年到1934年,哥德尔第一次来到普林斯顿大学高等研究院。他在这里见到丘奇、克林和罗塞尔。他在普林斯顿大学发表了《论形式数学系统的不可判定命题》的演讲,这对后来美国研究递归论是极大的推动。

1937年,哥德尔在维也纳讲授“公理化集合论”,这时他开始集中力量研究这个题目。在他秋天来到高等研究院时,他已经对选择公理的无矛盾性有所考虑,并把自己的思想同冯·诺依曼交谈过。不过,他的可构造集的思想、广义连续统假设和选择公理与NGB系统的无矛盾性,一直到1938年秋天才在高等研究院讲演,并在1938到1940年发表。这时他已经开始定居美国了。

1938年3月,希特勒兼并奥地利,这时哥德尔刚刚结婚。1939年9月,二次大战爆发,他于1939年底横贯苏联的西伯利亚太铁路经日本到了美国,从此再也没有回奥地利。在美国,除了1940年春季在圣母大学任教外,一直在普林斯顿高等研究院工作。由于研究院里有人反对和阻挠,直到1947年他才被批准为常任研究员,1953年才成为教授。对于这样伟大的数学家来说,得到这种称号的时间实在是太晚了。到这时,他在数理逻辑方面的主要工作都已经完成了,他的兴趣已经转向其他方面了。

1947年到1951年,哥德尔开始注意和研究广义相对论。他同爱因斯坦是多年老邻居,他们几乎天天一起散步回家。但是哥德尔表示,他对相对论的兴趣并非来自同爱因斯坦的谈话,而是来自对康德时空哲学的兴趣。1950年,他在国际数学家大会上做的报告,就是关于“旋转宇宙”的论文。

后来,哥德尔的兴趣转向哲学。他认为,健全的哲学思想对科学研究的成功有很密切的关系。他说,数学及元数学的(特别是关于超穷推理的)客观主义观点,对于他的逻辑研究是最根本的。1959年起,哥德尔开始阅读德国哲学家胡塞尔的哲学著作,并一直保持着强烈的兴趣。他认为有些哲学家,特别是拍拉图和笛卡尔,在他们一生中具有一种与日常生活的世界观完全不同的直观的世界观,也许胡塞尔也曾达到过这种境界。

晚年,哥德尔间或对数理逻辑作些工作。美国符号逻辑协会正在组织力量搜集整理他的著作,准备出版他的全集。他已经出版的逻辑方面的论著不过二十余篇,大都很简短,不过它们在历史上的作用是十分巨大的。

1978年1月14日下午,哥德尔在普林斯顿医院的椅子上坐着候诊时去世,享年72岁。

2、1930年数理逻辑的状况

1930年前,整个数学界是非常乐观的:希尔伯特的思想占统治地位;数学是建立在集合论和数理逻辑两块基石之上;康托尔的朴素集合论已被公理集合论所代替,从而消除了悖论;选择公理是一个很好的工具,数学中许多部门都要用到它;连续统假设仍然是悬案,不过希尔伯特多次觉得自己已接近解决这个难题,看来前景是乐观的;大部分数学可以建立在谓词演算的基础上,而一阶谓词演算的公理系统是无矛盾的,尽管其完全性仍有待证明;整个数学的基本理论是自然数的算术和实数理论,它们都已经公理化。这些公理系统应该是无

25

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库第三次数学危机(5)在线全文阅读。

第三次数学危机(5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/660734.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: