图4-1. 加入200 μL金属离子后m-TAPA的比色(a)和荧光(b)响应
Figure 4-1 Color (a) and fluorescence (b) changes of m-TAPA (5×10-5 M solution in CH3CN, 2 mL) after the
addition of 200 μL of respective cations
将0.2mL所有的金属离子水溶液分别加入到m-TAPA超分子体系中,发现当加入Cu2+时,溶液从无色变成褐色,如图4-1a所示。其他其他常见的金属离子,例如Mg2+, Zn2+, K+, Ag+, Ni3+, La3+, Li+, Cd+, Sn2+, In3+, Fe2+, Zr4+, Al3+, Sb3+和Fe3+,溶液颜色基本没有明显的变化。这一现象表明,m-TAPA聚集体不仅对于Cu2+具有比色识别功能,同时,也对Cu2+具有非常良好的选择性。因此,在可见光下很容易从其他金属中区分出Cu2+离子。这一实验验证了m-TAPA聚集体系在比色传感领域的应用。
为了进一步识别Fe3+离子,在365 nm下的紫外光照射下实施了荧光滴定实验,发现在所有金属离子中只有Fe3+和Cu2+能使m-TAPA的荧光完全猝灭,如图4-1b所示,综合上述对Cu2+的比色识别,就能很容易的识别出Fe3+离子。
第五章 结论与展望
本论文以三(4-溴苯基)胺(TBPA)为原料通过Suzuki-Miyaura偶联反应设计合成了m/p-TAPA荧光分子,并通过核磁氢谱、核磁碳谱、红外对其结构进行了表征。有利用紫外、荧光对其光学性质进行了测定,发现m-TAPA在350nm出的吸收峰发生了明显的蓝移,这表明m-TAPA分子间通过H型π-π堆积形成了超分子聚合物。P-TAPA在350nm出发生了明显的红移,这表明P-TAPA分子间通过J型π-π堆积形成了超分子聚合物。
我们以m-TAPA形成的超分子聚合物为荧光探针对多种金属离子进行了检测,我们发现m-TAPA聚合物荧光探针分子在水相中对Fe3+和Cu2+具有较高的选择性和灵敏度。
m-TAPA形成的超分子聚合物荧光探针分子作为一种新型的探针分子为材料科学和生命科学的发展开辟了一条新的道路,引领者21世纪化学的发展趋势。
参考文献:
[1] Yinon J, Peer Reviewed: Detection of explosives by electronic noses[J]. Analytical Chemistry, 2003, 75(1): 98A-105A.
[2] Lv Y Y, Xu W, Lin F W, Wu J, Xu Z K. Electrospun nanofibers of porphyrinated polyimide for the ultra-sensitive detection of trace TNT[J]. Sensors and Actuators B, 2013, 184(31): 205-211.
[3] Shanmugaraju S, Jadhav H, Patil Y P, Mukherjee P S. Self-Assembly of an octanuclear platinum (II) tetragonal prism from a new PtII4 organometallic star-shaped acceptor and its nitroaromatic sensing study[J]. Inorganic Chemistry, 2012, 51(24) :13072-13074.
[4] Long Y Y, Chen H B, Wang H M, Peng Z, Liu F, Pei J. Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer [J]. Analytica Chimica Acta, 2012, 744: 82- 91.
[5] Fainberg A. Explosives detection for aviation security[J]. Science, 1992, 255, 1531-1537.
[6] Cameron M. Picric acid hazards[M]. American Industrial Hygiene Association: Fairfax, VA, 1995.
[7] Yinon J. Forensic and environmental detection of explosives[M]. John Wiley & Sons Ltd.: Chichester, 1999.
[8] McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors[J]. Chemical Reviews, 2000, 100(7): 2537-2574.
[9] Pinnaduwage L A, Gehl A, Hedden D L, Muralidharan G, Thundat T, Lareau R T, Sulchek T, Manning L, Rogers B, Jones M, Adams J D. Explosives: a microsensor for trinitrotoluene vapour[J]. Nature, 2003, 425(6957 ): 474.
[10] Moore D S. Instrumentation for trace detection of high explosives[J]. Review of Scientific Instruments, 2004, 75(8): 2499-2512.
[11] Germain M E, Knapp M J. Optical explosives detection: from color changes to fluorescence turn-on[J]. Chemical Society Reviews, 2009, 38(9): 2543-2555.
[12] Goldman E R, Medintz I L, Whitley J L, Hayhurst A, Clapp A R, Uyeda H T, Deschamps J R, Lassman M E, Mattoussi H. A Hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor[J]. Journal of the American Chemical Society, 2005, 127(18): 6744-6751.
[13] Pramanik S, Zheng C, Zhang X, Emge T J, Li J. New microporous metal-organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds[J]. Journal of the American Chemical Society, 2011, 133(12): 4153-4155.
[14] Salinas Y, Manez R M, Marcos M D, Sancenon F, Costero A M, Parra M, Gil S. Optical chemosensors and reagents to detect explosives[J]. Chemical Society Reviews, 2012, 41(3): 1261-1296.
[15] Kolla P. Detecting hidden explosives[J]. Analytical Chemistry, 1995, 67(5): 184A-189A.
[16] Steinfeld J I, Jeffrey I S J. Explosives detection: a challenge for physical chemistry[J]. Annual Review of Physical Chemistry, 1998, 49: 203-232.
[17] Sylvia J M, Janni J A, Klein J D, Spencer K M. Surface-enhanced raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines[J]. Analytical Chemistry, 2000, 72(23): 5834-5840.
[18] Germain M E, Knapp M J. Transition-metal-catalyzed C-C bond formation through the fixation of carbon dioxide[J]. Chemical Society Reviews, 2009, 38(5): 2543-2555.
[19] Kim Y H, Webster O W. Multiple-bond character between two carborane polyhedra: the two-electron reduction of biscarborane[J]. Journal of the American Chemical Society, 1990, 112(11): 4593-4594.
[20] Miller T M, Neenan T X, Zayas R O, Bair H E. Synthesis and characterization of a series of monodisperse, 1,3,5-phenylene-based hydrocarbon dendrimers including C276H186 and their fluorinated analogs[J]. Journal of the American Chemical Society, 1992, 114(3):1018-1025.
[21] Schenning A P H J, Jonkheijm P, Peeters E, Meijer E W. Hierarchical order in supramolecular assemblies of hydrogen-bonded oligo(p-phenylene vinylene)s[J]. Journal of the American Chemical Society, 2001, 123(3): 409-416.
[22] Kawano S I, Fujita N, Shinkai S. Quater-, quinque-, and sexithiophene organogelators: unique thermochromism and heating-free sol-gel phase transition[J]. Chemistry-A European Joumal, 2005, 11(16): 4735-4742.
[23] Pratihar P, Ghosh S, Stepanenko V, Patwardhan S, Grozema F C, Siebbeles L D A, Wu?rthner F. Self-Assembly and semiconductivity of an oligothiophene supergelator[J]. Beilstein Journal of Organic Chemistry, 2010, 6: 1070-1078.
[24] Bhalla V, Gupta A, Kumar M. Fluorescent nanoaggregates of
pentacenequinone derivative for selective sensing of picric acid in aqueous media[J]. Organic letters, 2012, 14(12): 3112-3115.
[25] Demas J N, Grosby G A. Measurement of photoluminescence quantum yields. Review[J]. The Journal of Physical Chemistry, 1971, 75(8): 991-1024.
致 谢
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库TAPA的合成及其应用研究毕业论文(4)在线全文阅读。
相关推荐: