(2)能根据所给条件写出简单的一次函数表达式.
(3)经历一般规律的探索过程,发展学生的抽象思维能力;
(4)经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力.
(5)体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.
(6)在探索过程中体验成功的喜悦,树立学习的自信心. 本节课教学重点是:
理解一次函数和正比例函数的概念. 本节课教学难点是:
能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.
三、教学过程设计
本节课设计了七个环节: 第一环节:复习引入;第二环节:新课讲述;第三环节:巩固练习;第四环节:知识提高;第五环节:反馈练习;第六环节:课堂小结;第七环节:布置作业.
第一环节:复习引入
内容:复习上节课学习的函数,教师提出问题:
(1) 什么是函数? (2) 函数有哪些表示方式?
(3) 在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢?
意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容”的引入方法.问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识.
效果:
问题(1)(2)学生都能快而准的回答,问题(3)是在一个开放的环境中回答,学生不能很准确的表述出来,可让学生互相补充,也可教师进行补充、完善.通过学生亲身经历了感受函数在生活中的运用过程,初步形成数学建模的思想,感受成功的喜悦,充分体现了本节课的情感、态度目标.
若课堂气氛比较沉闷,也可由教师先举例,让学生来列函数表达式,激发学生的学习激情,再让学生举例:(如可补充如下习题)
①假设某学生骑自行车的速度为10km/h,则他骑自行车用的时间t(h)和所走过的路程s之间的关
6
系是什么?
②上网费用是2元/小时,则上网t(小时),费用y(元)的关系式是什么?
第二环节:新课讲述
内容:
例1 某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm.
(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表: x/kg y/cm 0 1 2 3 4 5 (2)你能写出x与y之间的关系式吗?
答案 (1) 3、3.5、4、4.5、5、5.5 ;(2) y=3+0.5x. 例2 某辆汽车油箱有汽油100L,汽车每行驶50km耗油9L. (1)完成下表: 汽车行驶路程x/km 油箱剩余汽油量y/L 0 50 100 150 200 300 (2)你能写出x与y之间的关系式吗?
(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢? 答案 (1) 100、91、82、73、64、46;
(2) x与y之间的关系式为 y=100-0.18x;
(3) 汽车行驶路程x不可能无限增大,因为汽油只有100L,每行驶50km耗油9L,行驶560km
后,油箱就没有油了,所以x不会超过560km.y代表油箱剩余油量,所以y应该小于100但不能小于零.
通过观察、探索、总结,归纳出一次函数与正比例函数的概念:
一般地,若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y为因变量).特别地,当b=0时,则y是x的正比例函数.
意图:从生动有趣的问题情景(弹簧的长度、汽车油箱中的余油量)出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.
效果:
7
从两个具体问题的函数表达式出发,互相讨论,教师在教学上恰当地设疑立障,引导学生大胆猜想,勇于探索,鼓励学生积极思维,总结出一次函数的定义,提高学生的分析问题、解决问题、总结归纳的能力.
主要从函数解析式这一角度去研究一次函数,这是学生第一次正式接触函数的表达式,教学中可根据学生状况多加一些例子,让学生逐步学会从函数表达式去认识函数,进一步掌握一次函数的定义.
第三环节:巩固练习
内容:
1.在函数(1)y=(5)y=32,(2)y=x-5,(3)y=-4x,(4)y=2x-3x, x1x-2 (6)y=中是一次函数的是 ,是正比例函数的
x-2是 .
2.若函数y=(6+3m)x+4n-4是一次函数,则m,n应满足的条件是 ;若是正比例函数,则m,n应满足的条件是 . 3.当k= 时,函数y=(k+3)x意图:对本节知识进行巩固练习.
效果:学生基本能交好的独立完成练习题,收到了较好的教学效果. 在第3题中,学生易忘记k+3≠0的条件,而错误的将答案写成±3.
第四环节:知识提高
内容:
例3 写出下列各题中x与y之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数? (1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间的关系; (2)圆的面积y(厘米)与它的半径x(厘米)之间的关系;
2
k2-8-5是关于x的一次函数.
(3)一棵树现在高50厘米,每个月长高2厘米,x个月后这棵树的高度为y(厘米),则y与x的关系.
答案: (1)由路程=速度×时间,得y=60x,y是x的一次函数,也是x的正比例函数; (2)由圆的面积公式,得y=px,y不是x的一次函数,也不是x的正比例函数; (3)这棵树每月长高2厘米,x个月长高了2x厘米,因而y=50+20x,y是x 的一次函
8
2数,但不是x的正比例函数.
例4 某地区电话的月租费为25元,在此基础上,可免费打50次市话(每次3分钟),超过50次后,每次0.2元.
(1)写出每月电话费y(元)与通话次数x(x>50)的函数关系式; (2)求出月通话150次的电话费;
(3)如果某月通话费为53.6元,求该月通话的次数.
分析:解决此类问题首先要理解题意,然后找出相等关系.此题相等关系为:每月通话费=月租费+超过50次后电话费.
答案: (1)根据题意得: y=25+(x-50)×0.2,即y=0.2x+15; (2)当x=150时,y=0.2×150+15=45;
(3)因为53.6>25,可知通话次数大于50次,即当y=53.6时,求x的值.53.6=0.2x+15,解得x=193.
意图:通过丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,根据所给的条件写出简单的一次函数的表达式,让学生体会数学的广泛应用,发展学生的抽象思维能力.
充分加强数学与现实的联系,促进学生新的认知结构的建立和数学应用能力的发展. 效果:
根据已知条件写出简单的一次函数的表达式,教学时,学生会出现一定的差异,此时,要给予学生足够的思考时间,必要的时候可组织学生交流讨论,而不能是简单的“告诉”.另外,在教学上还必须注意培养学生的书面表达能力,这些都是逻辑思维训练的一部分.
在例4中的(1)中,易错解为y=25+0.2x.应让学生仔细审题,找准等量关系;(2)、(3)两问是给定自变量的值,求函数数值,这类问题的实质就是解方程.
第五环节:反馈练习
内容:
1.下列语句中,具有正比例函数关系的是( ) (A) 长方形花坛的面积不变,长y与宽x之间的关系; (B) 正方形的周长不变,边长x与面积S之间的关系;
(C) 三角形的一条边不变,这条边上的高h与面积S之间的关系;
9
(D) 圆的面积为S,半径为r,S与r之间的关系.
2.我国现行个人工资、薪金所得税征收办法规定:月收入低于1600元的部分不收税;月收入超过1600元但低于2100元的部分征收5%的所得税??如果某人月收入1960元.他应缴纳个人工资、薪金所得税为(1960-1600)×5%=18(元).
(1)当月收入大于1600元而又小于2100元时,写出应缴纳所得税y(元)与月收入x (元)之间的关系式.
(2)某人月收入为1760元,他应该缴纳所得税多少元?
(3)如果某人本月缴所得税19.2元,那么此人本月工资、薪金是多少以元? 意图:对本节知识进行巩固练习.
效果:学生基本能较好地独立完成练习题,收到了较好的教学效果.
在第2题,学生容易遗忘几何的相关内容,在此教师可作适当的提醒,让学生更顺利地完成习题.
第六环节: 课堂小结
内容:
这节课我们学习了一类很有用的函数—— 一次函数,只要解析式可以表示成y=kx+b(k,b为常数,k≠0)的形式的函数则称为一次函数.正比例函数是一次函数当b=0时的特殊情形.(方式:师生互相交流总结.)
目的:鼓励学生结合本节课的学习内容,谈谈自己的收获和感想,进一步巩固本节课的知识. 实际效果:学生畅所欲言自己对本节课的感受与收获,都能准确的说出一次函数与正比例函数的概念.但学生容易忽略一次函数与实际生活的联系,教师应做适当补充.
第七环节:布置作业
1.根据下表写出x,y之间的一个关系式.
x y -1 0 1 2 3 2. 某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费50元,另外,每通话1分钟交费0.4元.
(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式; (2)某手机用户这个月通话时间为152分,他应缴费多少元?
10
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2013年新北师大版八年级数学上册 第四章一次函数全章教案 - 图文(2)在线全文阅读。
相关推荐: