在解题过程中,我们先想到基本算式
成。这是基本的思考办法。
一般地,应用分数除法玩“数学24”游戏的思考过程为:
固定的一个自然数只能是被除数,除数恰好由另外三个自然数凑成。
另外,我们还是要强调一下分数除法与分数乘法的相同处与不同处。学了分数以后,除法运算可以转化成乘法运算。因此,在玩“数学24”游戏的过程中,很多除法算式可以转化到乘法算式中去。但是它们之间还是有区别
握用分数除法这种工具来玩“数学24”游戏是必不可少的。
练习 16
用给出的四个数,按规则算出24。
1.(1)1,3,3,7; (2)2,2,5,7; (3)1,4,4,7; (4)1,2,8,8; (5)1,5,6,6; (6)5,8,8,8。 2.(1) 2,7,7,10; (2)3,5,5,9; (3)5,5,7,11; (4)2,6,6,12; (5)4,4,5,5; (6)2,5,5,10; (7)4,9,9,12; (8)3,7,9,13。 3.(1)1,3,4,6; (2)2,8,9,13; (3)1,6,6,8; (4)2,3,5,12; (5)3,4,6,13; (6)1,8,12,12; (7)3,4,8,13; (8)2,7,12,13。 第17讲 位值原则
同一个数字,由于它在所写的数里的位置不同,所表示的数也不同。也就是说,每一个数字除了本身的值以外,还有一个“位置值”。例如“5”,写在个位上,就表示5个一;写在十位上,就表示5个十;写在百位上,就表示5个百;等等。这种把数字和数位结合起来表示数的原则,称为写数的位值原则。 我们通常使用的是十进制计数法,其特点是“满十进一”。就是说,每10个某一单位就组成和它相邻的较高的一个单位,即10个一,叫做“十”,10个十叫做“百”,10个百叫做“千”,等等。写数时,从右端起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,等等(见下图)。
用阿拉伯数字和位值原则,可以表示出一切整数。例如,926表示9个百,2个十,6个一,即926=9×100+2×10+6。根据问题的需要,有时我们也用字母代替阿拉伯数字表示数,如:
其中a可以是1~9中的数码,但不能是0,b和c是0~9中的数码。
下面,我们利用位值原则解决一些整数问题。
个数之差必然能被9整除。例如,(97531-13579)必是9的倍数。
例2有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666。求原来的两位数。
分析与解:由位值原则知道,把数码1加在一个两位数前面,等于加了100;把数码1加在一个两位数后面,等于这个两位数乘以10后再加1。 设这个两位数为x。由题意得到 (10x+1)-(100+x)=666, 10x+1-100-x=666, 10x-x=666-1+100, 9x=765, x=85。
原来的两位数是85。 例3 a,b,c是1~9中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?
分析与解:用a,b,c组成的六个不同数字是
这六个数的和等于将六个数的百位、十位、个位分别相加,得到
所以,六个数的和是(a+b+c)的222倍。
例4用2,8,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少? 解:由例3知,可以组成的六个三位数之和是(2+8+7)×222, 所以平均值是(2+8+7)×222÷6=629。
例5一个两位数,各位数字的和的5倍比原数大6,求这个两位数。
(a+b)×5-(10a+b)=6, 5a+5b-10a-b=6, 4b-5a=6。
当b=4,a=2或b=9,a=6时,4b-5a=6成立,所以这个两位数是24或69。
例6将一个三位数的数字重新排列,在所得到的三位数中,用最大的减去最小的,正好等于原来的三位数,求原来的三位数。
分析与解:设原来的三位数的三个数字分别是a,b,c。若
由上式知,所求三位数是99的倍数,可能值为198,297,396,495,594,693,792,891。经验证,只有495符合题意,即原来的三位数是495。 练习17
1.有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数之和是970。求原来的两位数。
2.有一个三位数,将数码1加在它的前面可以得到一个四位数,将数码3加在它的后面也可以得到一个四位数,这两个四位数之差是2351,求原来的三位数。
5.从1~9中取出三个数码,用这三个数码组成的六个不同的三位数之和是3330。这六个三位数中最小的能是几?最大的能是几?
6.一个两位数,各位数字的和的6倍比原数小9,求这个两位数。
7.一个三位数,抹去它的首位数之后剩下的两位数的4倍比原三位数大1,求这个三位数。 第18讲 最大最小
同学们在学习中经常能碰到求最大最小或最多最少的问题,这一讲就来讲解这个问题。 例1两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?
分析与解:将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:
15=1+14,1×14=14; 15=2+13,2×13=26; 15=3+12,3×12=36; 15=4+11,4×11=44; 15=5+10,5×10=50; 15=6+9,6×9=54; 15=7+8,7×8=56。
由此可知把15分成7与8之和,这两数的乘积最大。
结论1如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。特别地,当这两个数相等时,他们的乘积最大。
例2比较下面两个乘积的大小: a=57128463×87596512, b=57128460×87596515。
分析与解:对于a,b两个积,它们都是8位数乘以8位数,尽管两组对应因数很相似,但并不完全相同。直接计算出这两个8位数的乘积是很繁的。仔细观察两组对应因数的大小发现,因为57128463比57128460多3,87596512比87596515少3,所以它们的两因数之和相等,即 57128463+87596512=57128460+87596515。
因为a的两个因数之差小于b的两个因数之差,根据结论1可得a>b。
例3用长36米的竹篱笆围成一个长方形菜园,围成菜园的最大面积是多少?
分析与解:已知这个长方形的周长是36米,即四边之和是定数。长方形的面积等于长乘以宽。因为 长+宽=36÷2=18(米),
2
由结论知,围成长方形的最大的面积是9×9=81(米)。 例3说明,周长一定的长方形中,正方形的面积最大。
例4两个自然数的积是48,这两个自然数是什么值时,它们的和最小? 分析与解:48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。 所以,两个自然数的乘积是48,共有以下5种情况: 48=1×48,1+48=49; 48=2×24,2+24=26; 48=3×16,3+16=19; 48=4×12,4+12=16; 48=6×8,6+8=14。
两个因数之和最小的是6+8=14。
结论2两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。
例5要砌一个面积为72米2的长方形猪圈,长方形的边长以米为单位都是自然数,这个猪圈的围墙最少长多少米?
解:将72分解成两个自然数的乘积,这两个自然数的差最小的是9-8=1。由结论2,猪圈围墙长9米、宽8米时,围墙总长最少,为(8+9)×2=34(米)。 答:围墙最少长34米。
例6把17分成几个自然数的和,怎样分才能使它们的乘积最大?
分析与解:假设分成的自然数中有1,a是分成的另一个自然数,因为1×a<1+a,也就是说,将1+a作为分成的一个自然数要比分成1和a两个自然数好,所以分成的自然数中不应该有1。
如果分成的自然数中有大于4的数,那么将这个数分成两个最接近的整数,这两个数的乘积大于原来的自然数。例如,5=2+3<2×3,8=3+5<3×5。也就是说,只要有大于4的数,这个数就可以再分,所以分成的自然数中不应该有大于4的数。
如果分成的自然数中有4,因为4=2+2=2×2,所以可以将4分成两个2。
由上面的分析得到,分成的自然数中只有2和3两种。因为2+2+2=6,2×2×2=8,3+3=6,3×3=9,说明虽然三个2与两个3的和都是6,但两个3的乘积大于三个2的乘积,所以分成的自然数中最多有两个2,其余都是3。由此得到,将17分为五个3与一个2时乘积最大,为3×3×3×3×3×2=486。
由例6的分析得到:
结论3把一个数拆分成若干个自然数之和,如果要使这若干个自然数的乘积最大,那么这些自然数应全是2或3,且2最多不超过两个。
例7把49分拆成几个自然数的和,这几个自然数的连乘积最大是多少? 解:根据结论3,由49=3×15+2+2,所以最大的积是
练习18
1.试求和是91,乘积最大的两个自然数。最大的积是多少?
之和的最小值是多少?
3.比较下面两个乘积的大小: 123456789×987654321, 123456788×987654322。
2
4.现计划用围墙围起一块面积为5544米的长方形地面,为节省材料,要求围墙最短,那么这块长方形地的围墙有多少米长?
5.把19分成几个自然数的和,怎样分才能使它们的积最大?
6.1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。那么这两个四位数各是多少?
7.在数123456789101112…9899100中划去100个数字,剩下的数字组成一个新数,这个新数最大是多少?最小是多少?
第19讲 图形的分割与拼接
怎样把一个图形按照要求分割成若干部分?怎样把一个图形分割成若干部分后,再按要求拼接成另一个图形?这就是本讲要解决的问题。
例1请将一个任意三角形分成四个面积相等的三角形。
分析与解:本题要求分成面积相等的三角形,因此可以利用“同底等高的三角形面积相等”这一性质来分割。
方法一:将某一边等分成四份,连结各分点与顶点(见左下图)。
方法二:画出某一边的中线,然后将中线二等分,连结分点与另两个顶点(见右上图)。 方法三:找出三条边上的中点,然后如左下图所示连结。
方法四:将三条边上的中点两两连结(见右上图)。
前三种方法可以看成先将三角形分割成面积相等的两部分,然后分别将每部分再分割成面积相等的两部分。本题还有更多的分割方法。
例2将右图分割成五个大小相等的图形。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库小学数学五年级奥数基础教程(7)在线全文阅读。
相关推荐: