77范文网 - 专业文章范例文档资料分享平台

小学数学五年级奥数基础教程(5)

来源:网络收集 时间:2019-04-21 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

上表中,第三、四行的数字分别是第二行对应数字乘以3和3,第三、四、五列的数字分别是第二列

2332

对应数字乘以2,2和2。对比72=2×3,72的任何一个约数至多有两个不同质因数:2和3。因为72有3个质因数2,所以在某一个约数的质因数中,2可能不出现或出现1次、出现2次、出现3次,这就有4种情况;同理,因为72有两个质因数3,所以3可能不出现或出现1次、出现2次,共有3种情况。 根据乘法原理,72的不同约数共有4×3=12(个)。

从例4可以归纳出求自然数N的所有不同约数的个数的方法:一个大于1的自然数N的约数个数,等于它的质因数分解式中每个质因数的个数加1的连乘积。

例如,2352=24×3×72,因为2352的质因数分解式中有4个2,1个3,2个7,所以2352的不同约数有

(4+1)×(1+1)×(2+1)=30(个);

3

又如,9450=2×3×52×7,所以9450的不同的约数有 (1+1)×(3+1)×(2+1)×(1+1)=48(个)。

例5 试求不大于50的所有约数个数为6的自然数。

分析与解:这是求一个数的约数个数的逆问题,因此解题方法正好与例4相反。

因为这个数有六个约数,6=5+1=(2+1)×(1+1),所以,当这个数只有一个质因数a时,这个数是525

a;当这个数有两个质因数a和b时,这个数是a×b。因为这个数不大于50,所以对于a,只有a=2,即

2222222

25=32;对于a2×b,经试算得到,2×3=12,2×5=20,2×7=28,2×11=44,3×2=18,3×5=45,5×2=50。

所以满足题意的数有八个:32,12,20,28,44,18,45,50。 练习11

1.一个长方体,它的正面和上面的面积之和是209分米2,如果它的长、宽、高都是质数,那么这个长方体的体积是多少立方分米?

2.爷孙两人今年的年龄的乘积是693,4年前他们的年龄都是质数。爷孙两人今年的年龄各是多少岁? 3.某车间有216个零件,如果平均分成若干份,分的份数在5至20之间,那么有多少种分法? 4.小英参加小学数学竞赛,她说:“我得的成绩和我的岁数以及我得的名次乘起来是3916,满分是100分。”能否知道小英的年龄、考试成绩及名次?

5.举例回答下面各问题:(1)两个质数的和仍是质数吗? (2)两个质数的积能是质数吗? (3)两个合数的和仍是合数吗?

(4)两个合数的差(大数减小数)仍是合数吗? (5)一个质数与一个合数的和是质数还是合数? 6.求不大于100的约数最多的自然数。

7.同学们去射箭,规定每射一箭得到的环数或者是“0”(脱靶)或者是不超过10的自然数。甲、乙两同学各射5箭,每人得到的总环数之积刚好都是1764,但是甲的总环数比乙少4环。求甲、乙各自的总环数。

第12讲 最大公约数与最小公倍数(一)

如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。

如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。自然数a1,a2,…,an的最大公约数通常用符号(a1,a2,…,an)表示,例如,(8,12)=4,(6,9,15)=3。

如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。自然数a1,a2,…,an的最小公倍数通常用符号[a1,a2,…,an]表示,例如[8,12]=24,[6,9,15]=90。

常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。

例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?

分析与解:因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是144,180,240的最大公约数。

2

所以(144,180,240)=2×2×3=12,即每60元的茶叶分装成12袋,每袋的价格最低是60÷12=5(元)。

为节约篇幅,除必要时外,在求最大公约数和最小公倍数时,将不再写出短除式。 例2 用自然数a去除498,450,414,得到相同的余数,a最大是多少?

分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。 498-450=48,450-414=36,498-414=84。 所求数是(48,36,84)=12。

例3 现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少? 分析与解:只知道三个自然数的和,不知道三个自然数具体是几,似乎无法求最大公约数。只能从唯一的条件“它们的和是1111”入手分析。三个数的和是1111,它们的公约数一定是1111的约数。因为1111=101×11,它的约数只能是1,11,101和1111,由于三个自然数的和是1111,所以三个自然数都小于1111,1111不可能是三个自然数的公约数,而101是可能的,比如取三个数为101,101和909。所以所求数是101。

例4 在一个30×24的方格纸上画一条对角线(见下页上图),这条对角线除两个端点外,共经过多少个格点(横线与竖线的交叉点)?

分析与解:(30,24)=6,说明如果将方格纸横、竖都分成6份,即分成6×6个相同的矩形,那么每个矩形是由(30÷6)×(24÷6)=5×4(个)

小方格组成。在6×6的简化图中,对角线也是它所经过的每一个矩形的对角线,所以经过5个格点(见左下图)。在对角线所经过的每一个矩形的5×4个小方格中,对角线不经过任何格点(见右下图)。

所以,对角线共经过格点(30,24)-1=5(个)。

例5 甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒。三人同时从起点出发,最少需多长时间才能再次在起点相会?

分析与解:甲、乙、丙走一圈分别需60秒、75秒和90秒,因为要在起点相会,即三人都要走整圈数,所以需要的时间应是60,75,90的公倍数。所求时间为[60,75,90]=900(秒)=15(分)。 例6 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。”你知道爷爷和小明现在的年龄吗?

分析与解:爷爷和小明的年龄随着时间的推移都在变化,但他们的年龄差是保持不变的。爷爷的年龄现在是小明的7倍,说明他们的年龄差是6的倍数;同理,他们的年龄差也是5,4,3,2,1的倍数。由此推知,他们的年龄差是6,5,4,3,2的公倍数。 [6,5,4,3,2]=60,

爷爷和小明的年龄差是60的整数倍。考虑到年龄的实际情况,爷爷与小明的年龄差应是60岁。所以现在 小明的年龄=60÷(7-1)=10(岁), 爷爷的年龄=10×7=70(岁)。

练习12

1.有三根钢管,分别长200厘米、240厘米、360厘米。现要把这三根钢管截成尽可能长而且相等的小段,一共能截成多少段?

2.两个小于150的数的积是2028,它们的最大公约数是13,求这两个数。

3.用1~9这九个数码可以组成362880个没有重复数字的九位数,求这些数的最大公约数?

4.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花圃的周长。亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印。问:这个花圃的周长是多少米?

5.有一堆桔子,按每4个一堆分少1个,按每5个一堆分也少1个,按每6个一堆分还是少1个。这堆桔子至少有多少个?

6.某公共汽车站有三条线路的公共汽车。第一条线路每隔5分钟发车一次,第二、三条线路每隔6分钟和8分钟发车一次。9点时三条线路同时发车,下一次同时发车是什么时间? 7.四个连续奇数的最小公倍数是6435,求这四个数。 第13讲 最大公约数与最小公倍数(二)

这一讲主要讲最大公约数与最小公倍数的关系,并对最大公约数与最小公倍数的概念加以推广。 在求18与12的最大公约数与最小公倍数时,由短除法

可知,(18,12)=2×3=6,[18,12]=2×3×3×2=36。如果把18与12的最大公约数与最小公倍数相乘,那么

(18,12)×[18,12]

=(2×3)×(2×3×3×2) =(2×3×3)×(2×3×2) =18×12。

也就是说,18与12的最大公约数与最小公倍数的乘积,等于18与12的乘积。当把18,12换成其它自然数时,依然有类似的结论。从而得出一个重要结论:

两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积。即, (a,b)×[a,b]=a×b。

例1 两个自然数的最大公约数是6,最小公倍数是72。已知其中一个自然数是18,求另一个自然数。 解:由上面的结论,另一个自然数是(6×72)÷18=24。

例2 两个自然数的最大公约数是7,最小公倍数是210。这两个自然数的和是77,求这两个自然数。 分析与解:如果将两个自然数都除以7,则原题变为:“两个自然数的最大公约数是1,最小公倍数是30。这两个自然数的和是11,求这两个自然数。” 改变以后的两个数的乘积是1×30=30,和是11。 30=1×30=2×15=3×10=5×6,

由上式知,两个因数的和是11的只有5×6,且5与6互质。因此改变后的两个数是5和6,故原来的两个自然数是

7×5=35和7×6=42。

例3 已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。 分析与解:因为12,15都是a的约数,所以a应当是12与15的公倍数,即是[12,15]=60的倍数。再由[a,b,c]=120知, a只能是60或120。[a,c]=15,说明c没有质因数2,又因为[a,b,c]=120=23×3×5,所以c=15。

因为a是c的倍数,所以求a,b的问题可以简化为:“a是60或120,(a,b)=12,[a,b]=120,求a,b。”

当a=60时,

b=(a,b)×[a,b]÷a =12×120÷60=24; 当a=120时,

b=(a,b)×[a,b]÷a

=12×120÷120=12。

所以a,b,c为60,24,15或120,12,15。

要将它们全部分别装入小瓶中,每个小瓶装入液体的重量相同。问:每瓶最多装多少千克?

分析与解:如果三种溶液的重量都是整数,那么每瓶装的重量就是三种溶液重量的最大公约数。现在的问题是三种溶液的重量不是整数。要解决这个问题,可以将重量分别乘以某个数,将分数化为整数,求出数值后,再除以这个数。为此,先求几个分母的最小公倍数,[6,4,9]=36,三种溶液的重量都乘以36后,变为150,135和80, (150,135,80)=5。

上式说明,若三种溶液分别重150,135,80千克,则每瓶最多装5千克。可实际重量是150,135,80的1/36,所以每瓶最多装

在例4中,出现了与整数的最大公约数类似的分数问题。为此,我们将最大公约数的概念推广到分数中。

如果若干个分数(含整数)都是某个分数的整数倍,那么称这个分数是这若干个分数的公约数。在所有公约数中最大的一个公约数,称为这若干个分数的最大公约数。 由例4的解答,得到求一组分数的最大公约数的方法: (1)先将各个分数化为假分数;

(2)求出各个分数的分母的最小公倍数a; (3)求出各个分数的分子的最大公约数b;

类似地,我们也可以将最小公倍数的概念推广到分数中。

如果某个分数(或整数)同时是若干个分数(含整数)的整数倍,那么称这个分数是这若干个分数的公倍数。在所有公倍数中最小的一个公倍数,称为这若干个分数的最小公倍数。 求一组分数的最小公倍数的方法: (1)先将各个分数化为假分数;

(2)求出各个分数的分子的最小公倍数a; (3)求出各个分数的分母的最大公约数b;

一个陷井。它们之中谁先掉进陷井?它掉进陷井时另一个跳了多远?

同理,黄鼠狼掉进陷井时与起点的距离为

所以黄鼠狼掉进陷井时跳了31 1/2÷6 3/10=5(次)。 黄鼠狼先掉进陷井,它掉进陷井时,狐狸跳了

练习13

1.将72和120的乘积写成它们的最大公约数和最最小公倍数的乘积的形式。

2.两个自然数的最大公约数是12,最小公倍数是72。满足条件的自然数有哪几组? 3.求下列各组分数的最大公约数:

4.求下列各组分数的最小公倍数:

部分别装入小瓶中,每个小瓶装入液体的重量相同。问:最少要装多少瓶?

于同一处只有一次,求圆形绿地的周长。 第14讲 余数问题

在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。

余数有如下一些重要性质(a,b,c均为自然数): (1)余数小于除数。

(2)被除数=除数×商+余数; 除数=(被除数-余数)÷商;

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库小学数学五年级奥数基础教程(5)在线全文阅读。

小学数学五年级奥数基础教程(5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/608565.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: