3.3采集电路的设计 3.3.1温度采集电路
图3-5 温度检测电路
由于DS18B20只有一个串行通信接口,与单片机的连接电路非常简单,只需和单片机的一个I/O端口连接即可,本系统选择了接口接的是P2.0端口,其连接电路图如图3-5所示。DS18B20的I/O口属于漏极开路输出,外接上拉电阻后常态下呈高电平。该器件内含寄生电源,其供电方式可以选择寄生电源方式,也可以选用外部电源。为方便起见,采用外部电源供电。 3.3.2湿度采集电路
HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。如何将电容的变化量准确地转变为计算机易于接受的信号,常有两种方法:一是将该湿敏电容置于运放与阻容组成的桥式振荡电路中,所产生的正弦波电压信号经整流、直流放大、再A/D转换为数字信号;另一种是将该湿敏电容置于555振荡电路中,将电容值的变化转为与之成反比的电压频率信号,可直接被计算机所采集
本系统采用的是将HS1101接入555定时器组成的震荡电路中,输出一定频率的方波信号,这种方法结构简单,使用方便,因此被广泛采用,具体电路图如3-6下:
9
图3-6 HS1101和NE556构成的湿度采集电路
集成定时器NE555一方面可以形成单稳态电路,另一方面可以形成多谐振荡电路,本系统选用的是NE556,它内部含有两个NE555定时器,其中R1,R2,C1,C2和NE556构成多谐振荡器,外接电阻R1,R2和湿敏电容C1构成了对湿敏电容C1的充电回路,7端通过芯片内部的晶体管对地短路又构成了对C1的放电回路,并将2,6端相连引入到片内比较器。该振荡电路的两个暂稳态过程交替如下:首先是电源Ucc通过R1,R2向C2充电,经T1充电时后,Uc2充至内比较器的高触发电平,约2/3Ucc,此时输入引脚3端由高电平突降为低电平,然后通过R2放电,经T2放电时间后,Uc2下降到比较器的低触发电平,约1/3Ucc,此时输入引脚3端又由低电平跃升为高电平,如此反复,形成方波输出,其中充放电时间为:
T1=C1(R1+R2)ln2 T2=C1R2ln2
因而输出的方波频率为:f=1/(t1+t2)=1/C1(R1+2R2)ln2=50HZ
只要改变定时元件R1和R2就可以改变脉冲的频率,从多谐振荡器出来的信号又接入到单稳态触发器,单稳态触发器它有两个触发状态,一个稳定状态,一个暂稳定状态,在外来触发脉冲作用下,能够由稳定状态翻转到暂稳定状态,而暂稳定状态维持一段时间后,再自动的返回到稳定状态,且暂稳定状态持续时间长短取决与电路本身参数,图中,R3,C3和传感器HS1101是外接地定时元件,触发脉冲Ui由5端输出,由8端输入,下降沿有效,从9端输出一个幅度,宽度都一定的矩形波信号,输出的脉冲宽度Tp为:Tp=R3(C2+Cx)ln3。
10
3.4 A/D转换
模数转换器(ADC),简称AD,是实现模拟量向数字量的转变的设备。 3.4.1 模数转换器的确定
A/D转换器位数的确定和系统所需测量控制的范围、精度有关。其一:实际选取的位数与其它环节所能获得的精度相适应,只要不低于它们就可以,不必太高。其二:如果微处理机是51系列单片机,采用8位以下的A/D转换器时,接口电路最简单。其三:由于温室大棚湿度变化相对于控制运行的速度来说是缓慢的,因此,在A/D转换的时候,也不要求有很快的转换速率。
ADC0809是采样分辨率为8位的、以逐次逼近原理进行模—数转换的器件。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。
主要特性
1)8路输入通道,8位A/D转换器,即分辨率为8位; 2)具有转换起停控制端; 3)转换时间为100μs; 4)单个+5V电源供电;
5)模拟输入电压范围0~+5V,不需零点和满刻度校准; 6)工作温度范围为-40~+85摄氏度; 7)低功耗,约15mW。 内部结构
ADC0809是CMOS单片型逐次逼近式A/D转换器,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型D/A转换器、逐次逼近。
外部特性(引脚功能)
ADC0809芯片有28条引脚,采用双列直插式封装: IN0~IN7:8路模拟量输入端; 2-1~2-8:8位数字量输出端;
ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路; ALE:地址锁存允许信号,输入高电平有效;
START: A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动
11
(脉冲上升沿使0809复位,下降沿启动A/D转换);
EOC: A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平);
OE:数据输出允许信号,输入高电平有效。当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量;
CLK:时钟脉冲输入端。要求时钟频率不高于640KHZ; REF(+)、REF(-):基准电压; Vcc:电源,单一+5V; GND:地。
首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动 A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平 时,输出三态门打开,转换结果的数字量输出到数据总线上。 3.4.2 ADC0809与8031的连接
单片机控制ADC可采用查询法和中断控制法。本系统采用中断方式,中断控制是指启动信号送到ADC后,单片机执行别的程序。当ADC转换完成时向单片机发出中断请求信号,单片机响应中断请求,读出转换数据,然后返回源程序。ADC0809与单片机的接口如图3-10所示。
AT89C51ADC0809ALEDCKQQCLKIN0IN1IN2IN3IN4IN5IN6IN7P0.7:P0.0地址锁存A2A1A0CBAD7:D0+WRP2.0RDINT1STARTALE+OEEOC
图3-7 ADC0809与单片机的接口
12
将A/D0809作为一的外扩展的并行I/O口,直接由单片机的P2.0和WR脉冲进行启动。模拟量输入通道选择端A、B、C分与单片机的P0.0、P0.1、P0.2直接相连,数据由A/D0809转换器的2-1 ~2-8输出。为了提高系统的效率,A/D转换器D采用中断的方法,将ADC0809的转换信号EOC经反相器连接到单片机的INT1。当A/D转换结束,向单片机申请中断,单片机响应后,即可读出A/D转换的结果数据。ADC0809的时钟信号由单片机的ALE提供(为1MHZ),转换器的启动信号START和8位模拟量输入地址锁存允许信号ALE由单片机的WR和P2.0口来控制。转换的输出允许信号OE由单片机的RD和P2.0口控制。 3.5键盘与显示 3.5.1键盘部分
根据该系统的实际情况,我选用了独立式键盘。独立式键盘是个按键相互独立地连通一条输入数据线如图3-8所示。这种键盘结构的优点是电路简单,缺点是当键的数量较多时占用的I/O线的数量较多。
vccAT89C51P1.0P1.1P1.2INTO&
图3-8 键盘连接
利用P1口实现,当开关全部打开时,均为高电平,经过与门仍为高电平,因此不会产生中断。当其中一键被按下时,INTO端变为低点平,向CPU申请中断,CPU响应后,用查询方法找到申请中断的功能键,并按程序设定执行相应的功能。 3.5.2显示部分
本系统的显示部分我选用了带有高速串行接口的8位LED控制驱动器MAX7219芯片,本设计采用1片MAX7219,在每轮温湿度检测完成以后,显示新值。MAX7219是MAXIM公司生产的一种串行接口方式7段共阴极LED显示驱动器,其片内包含有一个
13
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库毕业设计(论文)-基于单片机的大棚温湿度检测报警系统1(3)在线全文阅读。
相关推荐: