亿库教育网 http://www.eku.cc
33当n?2时,有a1?a2??a1?a2?,
2将a1?1代入上式,由于an?0,所以a2?2.
33(2)解:由于a1?a2?33则有a1?a2?3?an??a1?a2??an?, ① ?an?an?1?. ②
22233?an?an?1??a1?a2?3②-①,得an?1??a1?a2??an?an?1???a1?a2??an?,
22由于an?0,所以an?1?2?a1?a2??an??an?1. ③
同样有an?2?a1?a2?2?an?1??an?n≥2?, ④
22③-④,得an?1?an?an?1?an.
所以an?1?an?1.
由于a2?a1?1,即当n≥1时都有an?1?an?1,所以数列?an?是首项为1,公差为1的等差数列.
故an?n. [来源:ks5u.com]
亿库教育网 http://www.eku.cc
亿库教育网 http://www.eku.cc
20.
(广东省惠州市2010届高三第三次调研理科)(本小题满分14分) 已知数列?an?中,
a1?2,an?an?1?2n?0?n?2,n?N?.
(1)写出a2、a3的值(只写结果)并求出数列?an?的通项公式; (2)设bn?1111???????,若对任意的正整数n,当m???1,1?时,不等式an?1an?2an?3a2nt2?2mt?1?bn恒成立,求实数t的取值范围。 620、解:(1)∵ a1?2,an?an?1?2n?0?n?2,n?N? ∴ a2?6,a3?12 ?????2分
当n?2时,an?an?1?2n,an?1?an?2?2?n?1?,???,a3?a2?2?3,a2?a1?2?2, ∴ an?a1?2??n??n?1??????3?2??,
亿库教育网 http://www.eku.cc
亿库教育网 http://www.eku.cc
∴an?2??n??n?1??????3?2?1???2n?n?1?2?n?n?1? ???????5分
当n?1时,a1?1??1?1??2也满足上式, ∴数列?an?的通项公式为an?n?n?1??6分
(2)bn?111111????????????? an?1an?2a2n?n?1??n?2??n?2??n?3?2n?2n?1?111111?????????
2n?2n?1??n?1??n?2??n?2??n?3? ? ?11n1 ???????8分 ??2?1?n?1??2n?1?2n?3n?1(2n?)?3n 令f?x??2x?11?x?1?,则f??x??2?2, 当x?1时,f??x??0恒成立 xx∴ f?x?在x??1,???上是增函数,故当x?1时,f?x?min?f?1??3
1 ?????11分 61 要使对任意的正整数n,当m???1,1?时,不等式t2?2mt??bn恒成立,则须使
611t2?2mt??(bn)max?,即t2?2mt?0,对?m???1,1?恒成立,
66即当n?1时, (bn)max??t2?2t?0∴ ?,解得,t?2或t??2 ∴ 实数t的取值范围为???,?2???2,????14分
t?2t?0?2另解: bn?1?bn?111111?1????????n?22n?3n?1n2?1n?2n?2?1n?2n?3?1? ?13n?33n?4??0 222n?5n?22n?5n?31∴ 数列?an?是单调递减数列,∴(bn)max?b1?
6?21.(广东省惠州市2010届高三第三次调研文科)(本小题满分14分)
函数 f (x) 对任意x ? R都有 f(x)?f(1?x)?(1)求 f()的值.
(2)数列{an} 满足:an= f(0)+f(1 21212n?1)?f()????f()?f(1),nnn数列?an? 是等差数列吗?请给予证明;
亿库教育网 http://www.eku.cc
亿库教育网 http://www.eku.cc
(3)令bn?44an?12222,Tn?b1?b2?b3????bn,Sn?32?16.n
试比较Tn与Sn的大小.
所以Tn?Sn??????????????????????????14分
21.(2010年广东省揭阳市高考一模试题理科)(本题满分14分) 已知:x1,x2(x1?x2)是方程x?6x?5?0的两根,且yn?2n?N?.
(1)求y1,y2,y3的值;
xn?11,xn?2?(5?)xn?1. xnyn亿库教育网 http://www.eku.cc
亿库教育网 http://www.eku.cc
(2)设zn?ynyn?1,求证:
?zi?1ni?26n;
11?n?2. 62526w。.w.? (3)求证:对?n?N有|y2n?yn|?221.解:(1)解方程x?6x?5?0得x1?1,x2?5,---------------------------------------------1分
∴y1?x2?5,---------------------------------------------------------------------------------------------2分 x11)x2?26, y1x3?(5?∴y2?x326,------------------------------------------------------------------------------------------3分 ?x25x1351---------------------------------------------------------4分 )x3?135,∴y3?4?x326y2x11)xn?1得n?2?5? ynxn?1yn1?yn?1yn?5yn?1----------------------------------------------------------------6分 ynx4?(5?(2)由xn?2?(5?即yn?1?5?当n?2时yn?5,于是z1?y1y2?26,zn?ynyn?1=5yn?1?26(n?2) ∴
?zi?1ni?z1?z2??zn?26n--------------------------------------------------------------------9分 12526??,结论成立;------------------------------------------10分 25625625(3)当n?1时|y2?y1|?当n?2时,有|yn?1?yn|?|5?y?yn?1111?(5?)|?|n|?|yn?yn?1| ynyn?1ynyn?126?1|yn?1?yn?2|?226?111|y?y|?=----------------------------------------12分 21n?1n?1262526∵|y2n?yn|?|y2n?y2n?1?y2n?1?y2n?2?y2n?2?∴|y2n?yn|?|yn?1?yn|??yn?1?yn|
?|y2n?1?y2n?2|?|y2n?y2n?1|
?11[n?1?2526?11?] 2n?32n?22626亿库教育网 http://www.eku.cc
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库广东省各地2010年高三数学联考试题分类汇编(3)数列(2)在线全文阅读。
相关推荐: